「デバイス内AIの強化 QualcommとMetaがLlama 2テクノロジーと共同開発」
Qualcomm and Meta collaborate to enhance on-device AI with Llama 2 technology.
Metaの新しいオープンソースのLlama 2のリリースにより、大規模言語モデル(LLMs)の使用事例についての議論が起こっています。しかし、多くの人にとって、ローカルのハードウェア上でLlama 2にアクセスし、実行することは依然として重要な障壁です。この問題に対処し、Llama 2のパワーへのアクセスを民主化するために、MetaはQualcommと提携し、モデルをオンデバイスで使用するためにQualcommのAI対応Snapdragonチップを活用して最適化しています。
MetaとQualcommの協力により、Llama 2のオンデバイスでの実装が可能になり、新しいAI対応Snapdragonチップの機能を活用しています。モデルをオンデバイスで実行することで、開発者はクラウドコンピューティングコストを削減し、データが外部サーバーに送信されないため、ユーザーに強化されたプライバシーを提供することができます。オンデバイスでのAI処理は、インターネット接続なしで生成的AIを可能にし、ユーザーの好みに合わせたモデルのパーソナライズも可能にします。
QualcommのHexagonプロセッサは、Snapdragonチップにマイクロタイル推論、テンソルコア、SegNet、スカラーおよびベクトルワークロード用の専用処理など、さまざまなAI機能を備えています。Llama 2をQualcomm AIスタックに統合することで、オンデバイスでのAIモデルの実行がさらに最適化されます。
- マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ
- 「テキストゥアをご紹介します:3Dメッシュのテキストゥアリングのための新しい人工知能(AI)フレームワーク」
- 「Amazon Transcribe Toxicity Detectionを使用して、会話中の有害な言語をフラグ付けします」
Metaは、最初のLLaMAモデルのリークから多くを学びました。最初は研究者や学術機関にのみ提供されていたLLMのリークは、オープンソースのLLMイノベーションの爆発を引き起こし、さまざまな改良版のLLaMAを生み出しました。オープンソースコミュニティの貢献は大きく、デバイス上で実行できるバージョンが作成され、LLMがより広い観客にアクセス可能になりました。
リークに対応するため、MetaはLlama 2のリリースにおいて異なるアプローチを取り、オープンネスと協力を重視しています。Qualcommとの提携により、チップメーカーはモデルの内部機能に対する洞察を得て、Snapdragonチップ上でのパフォーマンスを最適化することができます。この協力は、2024年のQualcomm Snapdragon 8 Gen 3チップの発売と同時に予定されています。
オープンソースコミュニティもLlama 2の開発に重要な役割を果たすと予想されています。業界のオンデバイスAIへの勢いとオープンなLLMエコシステムを組み合わせることで、この動きは活気あるオンデバイスAIエコシステムを育成するための最初の一歩と見なされています。
専門家は、オープンなLLMがAIパワードのコンテンツ生成、インテリジェントアシスタント、生産性アプリケーションなどの新世代をもたらす可能性があると予測しています。デバイス上でネイティブにLLMを実行できる能力は、オンデバイスAI処理の数多くの可能性を開放し、AppleのM1チップにニューラルエンジンを組み込んだことや、MicrosoftのHybrid AI Loopツールキットに示されるように、エッジでのAI機能の成長トレンドをサポートします。
全体的に、MetaとQualcommの提携は、AIモデルへのアクセスを民主化するための重要な一歩であり、開発者がAIパワードアプリケーションを作成し、iPhoneと同様のアプリストア爆発をもたらす新しいオンデバイスAIエコシステムの時代を迎えることを可能にしています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「AWSは、人工知能、機械学習、生成AIのガイドを提供しており、AI戦略を計画するための新しい情報を提供しています」
- 「グラフ注意ネットワーク論文のイラストとPyTorchによる実装の説明」
- 「AIの力を解き放つ – VoAGIとMachine Learning Masteryによる特別リリース」
- 「DreamPose」というAIフレームワークを使用して、ファッション画像を見事な写真のようなビデオに変換します
- 遺伝的アルゴリズムを使用したPythonによるTV番組スケジューリングの最適化
- 「MACTAに会いましょう:キャッシュタイミング攻撃と検出のためのオープンソースのマルチエージェント強化学習手法」
- 「クラスタリング解放:K-Meansクラスタリングの理解」