PyTorchEdgeはExecuTorchを発表しました:モバイルおよびエッジデバイス向けのオンデバイスでの推論をエンパワーメント

PyTorchEdgeがExecuTorchを発表!モバイルとエッジデバイス向けのオンデバイス推論が可能に!

画期的な取り組みとして、PyTorch Edgeは新しいコンポーネント、ExecuTorchを導入しました。これはモバイルおよびエッジデバイスのオンデバイス推論能力を革新する革新的なソリューションであり、Arm、Apple、およびQualcomm Innovation Centerを含む業界の重鎮からの支持を集め、ExecuTorchはオンデバイスAIの分野で先駆的な力となっています。

ExecuTorchはオンデバイスAIエコシステム内の断片化に対処するための重要な一歩です。緻密に設計されたデザインは、シームレスなサードパーティ統合のための拡張ポイントを提供し、この革新により、機械学習(ML)モデルの専門ハードウェア上での実行を加速します。著名なパートナーは、それぞれのハードウェアプラットフォームでモデルの推論実行を最適化するために独自のデリゲート実装を提供しており、ExecuTorchの効果をさらに高めています。

ExecuTorchの作者は以下を用意しています:

  • 詳細なドキュメント。
  • アーキテクチャの詳細な洞察。
  • ハイレベルコンポーネント。
  • プラットフォーム上で実行される模範的なMLモデル。

さらに、包括的なエンドツーエンドのチュートリアルが利用でき、さまざまなハードウェアデバイス上でモデルのエクスポートと実行のプロセスをユーザーがガイドします。 PyTorch Edgeコミュニティは、独創的なExecuTorchの応用が確実に現れることを熱望しています。

ExecuTorchのコアは、軽量なオペレータレジストリを特徴とするコンパクトなランタイムで構成されています。このランタイムは、モバイル電話から組み込みハードウェアまでのさまざまなエッジデバイス上でPyTorchプログラムを実行するための効率的なパスを提供します。 ExecuTorchには、ML開発者向けのソフトウェア開発キット(SDK)とツールチェーンが付属しており、ML開発者にとって直感的なユーザーエクスペリエンスを提供します。このシームレスなワークフローにより、開発者はモデルの作成からトレーニング、そしてデバイスデリゲーションまで、一つのPyTorch環境内でシームレスに移行することができます。ツールスイートはまた、オンデバイスモデルのプロファイリングを可能にし、元のPyTorchモデルのデバッグ方法を改善します。

ExecuTorchは、組み合わせ可能なアーキテクチャから構築されており、ML開発者は利用するコンポーネントに関する確信を持つための情報を提供し、必要に応じて拡張のためのエントリーポイントを提供します。この設計は、ポータビリティの向上、生産性の向上、優れたパフォーマンスなど、MLコミュニティにいくつかの利益をもたらします。このプラットフォームは、ハイエンドのモバイル電話からリソース制約のある組み込みシステムやマイクロコントローラまで、さまざまなコンピューティングプラットフォームで互換性があります。

PyTorch Edgeは、研究とプロダクション環境のギャップを埋めることを目指しています。PyTorchの能力を活用することで、MLエンジニアはサーバ、モバイルデバイス、組み込みハードウェアなどのダイナミックかつ進化する環境にわたってモデルを作成および展開することが可能となります。この包括的なアプローチは、拡張現実(AR)、仮想現実(VR)、ミックスドリアリティ(MR)、モバイル、IoTなどのドメインでのオンデバイスソリューションへの需要の増加に対応しています。

PyTorch Edgeは、多様なエッジデバイスに対応する能力を備えた多様なMLモデルのデプロイメントを可能にする繁栄するエコシステムの道を切り開きます。プラットフォームのコアコンポーネントは、様々なハードウェア構成とパフォーマンス能力を持つデバイス間での互換性を確保しています。PyTorch Edgeは、明確なエントリーポイントと表現を開発者に提供することで、オンデバイスAIの領域での成長するエコシステムへの道を切り開きます。

結論として、ExecuTorchはPyTorch EdgeがオンデバイスAIの推進に取り組んでいることを物語っています。業界のリーダーの支援と先見の明あるアプローチを持つこのプラットフォームは、モバイルおよびエッジデバイスのオンデバイス推論能力の新たな時代を告げ、AIの分野での革新的なブレイクスルーを約束します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「サリー大学の研究者が開発した新しいソフトウェアは、AIが実際にどれだけの情報を知っているかを検証することができます」

ここ数年、人工知能(AI)のドメインでいくつかの技術的なブレークスルーがあり、いくつかの産業やセクターに深い影響を与え...

機械学習

ショッピファイの製品推奨アプリに生成AIを導入する

ショッピファイの製品推薦アプリケーションであるSearch and DiscoveryにジェネレーティブAIがどのように実装されたかについ...

機械学習

AIコードの意図

現代のIDEには、コードの意図を含む機能がありますこれにより、コンテキストに基づいてコードに対して事前に定義されたアクシ...

機械学習

画像認識におけるディープラーニング:技術と課題

「人工知能の広大な領域において、特に画像認識の分野において、ディープラーニングはゲームチェンジャーとして登場しました」

機械学習

「Googleバードを効果的に使用する5つの方法」

Google Bardで生産性を最大限に引き出すための5つの戦略をご紹介しますGoogle Bardはワークフローの再構築、意思決定の向上、...

データサイエンス

生成AIモデル:マーチャンダイジング分析のユーザーエクスペリエンス向上

私たちのデータプラットフォームで利用可能なデータについて、ビジネスユーザーが何でも尋ねることができるように、生成型AI...