「コンシューマハードウェア上でPythonコーディングのためにLlama2を微調整する方法」

PythonコーディングのためにLlama2をコンシューマハードウェア上で微調整する方法

監督されたファインチューニング

監督されたファインチューニングと低ランク適応技術によるLlama2のPythonの能力向上

イントロダクション

前の記事では、Metaが最近導入し、研究や商用利用のためにコミュニティに提供したLarge Language models (LLMs)のファミリーであるLlama 2について詳しく説明しました。特定のタスク向けに既に設計されたバリアントもあります。例えば、チャットアプリケーション向けのLlama2-Chatです。それでも、さらに自分のアプリケーションに合ったLLMを入手したい場合もあります。

この思考の流れに従い、私たちが言及している技術は転移学習です。このアプローチでは、既にLlama2などのモデルにある広範な知識を活用し、その理解を新しいドメインに転送することが含まれます。ファインチューニングは転移学習の一部または特定の形態です。ファインチューニングでは、事前学習済みのレイヤーを含むモデル全体の重みが通常、新しいデータに合わせて調整されます。これは、事前学習中に得られた知識が新しいタスクの特定の要件に基づいて洗練されることを意味します。

この記事では、カスタムデータセットを使用してLlama2のPythonコーディングタスクの能力を向上させるための体系的なアプローチを概説します。まず、目的に合わせてカスタムデータセットを作成し、Llama2のプロンプト構造と整合させます。次に、Supervised Fine-Tuning (SFT)とQuantized Low-Rank Adaptation (QLoRA)を使用してLlama2の基本モデルを最適化します。最適化後、モデルの重みを基本となるLlama2と組み合わせます。最後に、ファインチューニングされたモデルを使用して推論を実行する方法と、ベースラインモデルと比較した結果を紹介します。

図1:PythonコーダーのLlama2(画像の出典)

重要な注意点として、ファインチューニングは必ずしも必要ではありません。他のアプローチの方が実装が容易であり、場合によっては使用目的により適しています。例えば、既存の知識を活用して情報クエリを効率的に処理するベクトルデータベースによる意味検索は、カスタムトレーニングなしで既存の知識を活用します。ファインチューニングが必要なのは、専門的なQ&Aやコンテキストに応じた応答など、カスタムデータを使用する必要があるときです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

「アナコンダのCEO兼共同創業者、ピーターウォングによるインタビューシリーズ」

ピーター・ワンはAnacondaのCEO兼共同創設者ですAnaconda(以前はContinuum Analyticsとして知られる)を設立する前は、ピー...

人工知能

「ナレ・ヴァンダニャン、Ntropyの共同創設者兼CEO- インタビューシリーズ」

Ntropyの共同創設者兼CEOであるナレ・ヴァンダニアンは、開発者が100ミリ秒未満で超人的な精度で金融取引を解析することを可...

人工知能

Diginiのスマートセンスの社長、ガイ・イエヒアブによるインタビューシリーズ

ガイ・イハイアヴ氏は、ビジネスの成功に最も重要な資産を保護するためにインターネット・オブ・シングス(IoT)の力を活用す...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

データサイエンス

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成...