「PythonでGoogleのPaLM 2 APIを使う方法」

PythonでGoogleのPaLM 2 APIを使う方法

GoogleのLLMをカスタマイズしてアプリケーションに統合する

Alexandre DebièveによるUnsplashの画像

生成AIは至る所に存在しています。私たちは、その強力なテクノロジーが持つ潜在能力がますます明らかになるにつれ、これにますます多くの企業が投資しているのを目にします。そして、ガートナーは述べています:近い将来、[生成AI]は競争上の優位性と差別化要因になるでしょう。

「近い将来、[生成AI]は競争上の優位性と差別化要因になるでしょう。」

残念ながら、生成AIモデルを開発することは、単なる複雑なエンジニアリング作業だけではなく、通常はかなり高価なプロジェクトです。幸いなことに、私たちはこれを自分自身で開発する必要はありません – APIを使用して既に開発されたものを再利用することができます!ですから、これ以上待つことはありません – 早速、私たちのアプリケーションに統合することで、生成AIをどのように活用できるかを見てみましょう。

この記事では、私たちはGoogleのLLMに対する回答である「PaLM 2」APIを見ていきます。PaLM 2は、Googleの初期モデルよりも約5倍多くのトレーニングデータを使用している、彼らの最新バージョンのPathways Language Modelです。

この記事では、いくつかのコード例を紹介し、Google Cloudに認証し、Python 3.11を使用してPaLM 2 APIを使用およびカスタマイズする方法を説明します。

1 | はじめに

PaLM 2 APIはGoogle CloudVertex AIプラットフォームを介してアクセスできます。したがって、API呼び出しを行う前に、Google Cloudアカウントの設定が必要です。ここでサインアップし、サービスを試すために$300の無料クレジットを入手することができます。

アカウントとプロジェクトの設定が完了したら、Vertex AI APIに認証するために使用するサービスアカウントを作成できます。サービスアカウントを使用する理由は、特定のIAM権限のみを与えることで、Google Cloudリソースへのアクセス制御を確保できるからです。私たちのユースケースでは、サービスアカウントにVertex AI Userロールを付与します。これはあなたのユースケースには広すぎるかもしれませんので、利用可能なアクセスロールを確認し、ニーズに合ったものを選択することをお勧めします。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「マイクロソフトは、VALLE-Xをオープンソース化しました:多言語対応のテキスト読み上げ合成および音声クローニングモデル」

マイクロソフトのVALL-E XゼロショットTTSモデルのオープンソース実装が登場しました。これにより、テキスト読み上げ合成と音...

AIニュース

ChatGPTの大きなサプライズ:OpenAIがAIマーケットプレイスを作成

OpenAIがAIマーケットプレイスで新たな領域に進出 大人気チャットボットChatGPTの創造者であるOpenAIが再び話題に。The Infor...

AIニュース

Dropboxが、ゲームチェンジングなAIパワードツールを発表:生産性とコラボレーションの新時代

今日のデジタル世界では、常にデータに圧倒されています。以前に比べて情報がより多く利用可能になっていますが、必要な情報...

機械学習

GPTとBERT:どちらが優れているのか?

生成AIの人気の高まりに伴い、大規模言語モデルの数も増加していますこの記事では、GPTとBERTの2つのモデルを比較しますGPT(...