PySparkでのランダムフォレスト回帰の実装方法

PySparkでのランダムフォレスト回帰の実装方法

ランダムフォレストによる回帰モデリングのPySparkチュートリアル

Jachan DeVol氏の写真

はじめに

PySparkは、Apache Sparkをベースに構築された強力なデータ処理エンジンであり、大規模データ処理に特化しています。スケーラビリティ、速度、多様性、他のツールとの統合、使いやすさ、組み込みの機械学習ライブラリ、リアルタイム処理能力を提供します。大規模データ処理タスクを効率的かつ効果的に処理するための理想的な選択肢であり、ユーザーフレンドリーなインターフェースによりPythonでの簡単なコード記述が可能です。

ggplot2で見つかるDiamondsのデータを使用して、ランダムフォレスト回帰モデルの実装方法とPySparkによる結果の解析を説明します。同じデータセットに対して線形回帰がPySparkでどのように適用されるかを見たい場合は、こちらをご覧ください!

このチュートリアルでは、以下のステップをカバーします:

  1. データを読み込んでベクトル化された入力に準備する
  2. MLlibのRandomForestRegressorを使用してモデルをトレーニングする
  3. MLlibのRegressionEvaluatorを使用してモデルのパフォーマンスを評価する
  4. モデルの透明性のために特徴の重要性をプロットして解析する
Martin de Arriba氏の写真

データの準備

diamondsデータセットには、caratcolorcutclarityなどの特徴が含まれています。これらはデータセットのドキュメントにリストされています。

予測しようとしている目標変数はpriceです。

df = spark.read.csv("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv", header="true", inferSchema="true")display(df)

線形回帰チュートリアルと同様に、データを前処理して数値特徴のベクトル化結果を得る必要があります。カテゴリ変数を数値特徴にエンコードし、数値変数と組み合わせて最終的なベクトルを作成する必要があります。

この結果を得るための手順は以下の通りです:

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...

人工知能

「クリス・サレンス氏、CentralReachのCEO - インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクラ...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

人工知能

「スノーケルAIのCEO兼共同創設者、アレックス・ラットナー - インタビューシリーズ」

アレックス・ラトナーは、スタンフォードAIラボを母体とする会社、Snorkel AIのCEO兼共同創設者ですSnorkel AIは、手作業のAI...

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...