「ChatGPTのような言語モデルに関するプライバシー上の懸念:このAI論文が潜在的なリスクと保護対策を明らかにする」

『ChatGPTのような言語モデルのプライバシー上の懸念:潜在的なリスクと保護対策を明らかにするAI論文』

ChatGPTが記録を塗り替えている間に、OpenAIのChatGPTで使用される個人情報のセキュリティについて疑問が出されています。最近、Google DeepMind、ワシントン大学、コーネル大学、CMU、UCバークレー、ETHチューリッヒの研究者たちが可能な問題を発見しました。特定の指示を使用することで、ChatGPTが機密情報を漏洩させる可能性があります。

リリースからわずか2か月で、OpenAIのChatGPTは1億人以上のユーザーを集め、その人気の高さを示しています。書籍、雑誌、ウェブサイト、投稿、記事など、さまざまなインターネットソースから計3000億以上のデータがプログラムで使用されています。OpenAIはプライバシーを保護するための最善の努力をしていますが、定期的な投稿や会話により、公に開示されるべきではないかなりの量の個人情報が追加されます。

Googleの研究者たちは、ChatGPTが公開用には意図されていないトレーニングデータにアクセスしてリvealする方法を見つけました。指定されたキーワードを適用することで、1万以上の異なるトレーニングインスタンスを抽出しました。これにより、執念を持った敵が追加データを取得する可能性があると示唆されます。

研究チームは、ChatGPTを無制限に繰り返し使わせることで、モデルが個人情報をさらすことができる方法を示しました。たとえば、「詩」や「会社」といった単語を無限に繰り返させることで、住所、電話番号、名前などを抽出した可能性があります。これはデータ漏洩につながる可能性があります。

一部の企業は、これらの懸念に対応してChatGPTなどの大型言語モデルの使用に制限を設けています。たとえば、Appleは社員にChatGPTや他のAIツールの使用を禁止しています。さらに、予防措置として、OpenAIは会話履歴を無効にする機能を追加しました。ただし、保持データは30日間保管され、その後永久に削除されます。

Googleの研究者は、プライバシーに敏感なアプリケーションに大規模な言語モデルを展開する際に、特別な注意が必要であることを強調しています。彼らの調査結果は、将来のAIモデルの開発において慎重な検討と向上したセキュリティ対策、およびChatGPTや類似のモデルの広範な使用に関連する潜在的なリスクの重要性を強調しています。

結論として、ChatGPTにおける潜在的なデータの脆弱性の暴露は、ユーザーや開発者にとって戒告となります。数百万人の人々が定期的にそれとやり取りしているこの言語モデルの広範な利用は、プライバシーの優先順位付けと不正なデータ開示を防ぐための堅牢な保護策の実施の重要性を強調しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「AutoGenを使った戦略的AIチームビルディングが簡単になりました」

イントロダクション デジタルフロンティアが無限の領域に達し、AutoGenは変革的なパラダイムの設計者として現れます。異なる...

データサイエンス

2024年の予測17:RAG to RichesからBeatlemaniaとNational Treasuresへ

メリアム・ウェブスターの前に譲れ:今年、企業は年間のワードに追加するための多くの候補を見つけました。「生成的AI」と「...

データサイエンス

リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています

「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られています...

機械学習

「DAE Talking 高忠実度音声駆動の話し相手生成における拡散オートエンコーダー」

今日は、新しい論文と、私が出会った中で最高品質の音声駆動ディープフェイクモデルについて話し合いますマイクロソフトリサ...

AIニュース

INVE 対話型AIマジックでビデオ編集を革新する

画像編集なしの世界を想像できますか?面白いミーム、息をのむような風景、魅力的なインスタグラムの写真はどこに魅力を失い...

機械学習

アップステージがSolar-10.7Bを発表:一回の会話用に深いアップスケーリングと微調整された精度を持つ先駆的な大規模言語モデルを実現

韓国のAI企業、Upstageの研究者たちは、言語モデルのパフォーマンスを最大化し、パラメータを最小化するという課題に取り組ん...