プリンストン大学の研究者が、自然界の写実的な3Dシーンの手続き生成器であるInfinigenを紹介しました

Princeton University researchers introduced Infinigen, a procedural generator for realistic 3D scenes in nature.

プリンストン大学の研究チームは、「プロシージャルジェネレーションを使用した無限の写実的な世界」という最近の論文で、画期的なプロシージャルジェネレーターであるInfinigenを紹介しました。この研究は、多様性が限られ、現実世界のオブジェクトの複雑さを捉えることができない既存の合成データセットの制限に対処しています。

Infinigenは完全にプロシージャルなシステムであり、形状、テクスチャ、材料、およびシーンの構成を0から生成することができます。Infinigenの主要な特徴は、粗いおよび細かいジオメトリとテクスチャの詳細をプロシージャルに生成することによって高い写実性を生み出す能力にあります。Infinigenは分離されているため、生成されるすべてのジオメトリ情報は現実世界の参照に基づいており、合成されたシーンの真正性を高めています。

Infinigenのアーキテクチャは、プロシージャルジェネレーションの能力で知られている広く使用されているグラフィックスシステムであるBlenderに基づいて構築されています。研究チームは、自然物体やシーンのカバレッジを拡大するためのプロシージャルルールのライブラリを設計および実装しました。これらのルールはBlenderで利用可能な便利なプリミティブを活用しています。さらに、チームは、BlenderノードグラフをPythonコードに変換する自動変換ツールを含む、プロシージャルルールの作成を簡素化するユーティリティを開発しました。さらに、オブジェクトの深度、遮蔽境界、バウンディングボックス、光学フロー、表面法線、オブジェクトカテゴリ、およびインスタンスセグメンテーションなどの情報を提供するグラウンドトゥルーラベルで合成画像をレンダリングするユーティリティも開発されました。

Infinigenによって生成された合成データの品質を評価するために、チームは広範な実験を実施し、既存の合成データセットおよびジェネレーターと比較しました。これらの実験の結果、Infinigenは外部ソースに頼らずに写実的でオリジナルなアセットやシーンを生成する驚異的な能力を持っていることが示され、現実世界の複雑さをより正確に反映する多様で広範なトレーニングデータセットを生成する可能性を示しています。

Infinigenは、研究者がより広いコミュニティとの協力によって育成することを意図しているオープンソースプロジェクトです。彼らは、すべての現実世界の要素を包括するようにカバレッジを拡大し、その継続的な開発と成長を確保することにコミットしています。Infinigenを無料で提供することで、研究チームは協力を促進し、プロシージャルジェネレーションのさらなる進歩をインスパイアすることを望んでいます。

全体的に、Infinigenの導入は、コンピュータビジョンタスクのための合成データを生成するための重大な進歩を示しています。そのプロシージャルアプローチと写実的なシーンを生成する能力は、既存の合成データセットと現実世界のオブジェクトの複雑さのギャップを埋めることを約束し、さまざまなコンピュータビジョンアプリケーションでモデルをトレーニングするための貴重なツールとなります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

UCバークレーの研究者たちは、LLMCompilerを紹介しました:LLMの並列関数呼び出しパフォーマンスを最適化するLLMコンパイラ

以下は、UCバークレー、ICSI、およびLBNLの研究チームが開発したLLMCompilerというフレームワークです。このフレームワークは...

機械学習

新しいツールと機能の発表:責任あるAIイノベーションを可能にする

生成AIの急速な成長は、有望な新しいイノベーションをもたらし、同時に新たな課題も引き起こしていますこれらの課題には、生...

機械学習

「TableGPTという統合された微調整フレームワークにより、LLMが外部の機能コマンドを使用してテーブルを理解し、操作できるようになります」

表は、財務分析、サプライチェーン管理、ヘルスケア分析など、さまざまなコンテキストでデータ駆動型の意思決定の基盤として...

機械学習

「これらの完全自動の深層学習モデルは、スマートフォンの統合を使用して、猫の苦痛指標スケール(FGS)を使用した痛み予測に使用できます」

人工知能(AI)の能力は、医療、金融、教育など、あらゆる業界に広がっています。医学や獣医学の分野では、適切な治療を施す...

機械学習

WAYVE社がGAIA-1を発表:ビデオ、テキスト、アクション入力を活用して現実的な運転ビデオを作成する自律性のための新しい生成AIモデル

自動車産業は長年、自律走行を目指し、交通を革命化し、道路安全性を高めることを認識してきました。しかし、複雑な現実のシ...

データサイエンス

「メーカーに会う ロボット学生がNVIDIA Jetsonを搭載した自律型車椅子を発表する」

AIの助けを借りて、ロボット、トラクターやベビーカー、さらにはスケートパークさえも自律化しています。Kabilan KBという開...