プリンストン大学の研究者が、自然界の写実的な3Dシーンの手続き生成器であるInfinigenを紹介しました

Princeton University researchers introduced Infinigen, a procedural generator for realistic 3D scenes in nature.

プリンストン大学の研究チームは、「プロシージャルジェネレーションを使用した無限の写実的な世界」という最近の論文で、画期的なプロシージャルジェネレーターであるInfinigenを紹介しました。この研究は、多様性が限られ、現実世界のオブジェクトの複雑さを捉えることができない既存の合成データセットの制限に対処しています。

Infinigenは完全にプロシージャルなシステムであり、形状、テクスチャ、材料、およびシーンの構成を0から生成することができます。Infinigenの主要な特徴は、粗いおよび細かいジオメトリとテクスチャの詳細をプロシージャルに生成することによって高い写実性を生み出す能力にあります。Infinigenは分離されているため、生成されるすべてのジオメトリ情報は現実世界の参照に基づいており、合成されたシーンの真正性を高めています。

Infinigenのアーキテクチャは、プロシージャルジェネレーションの能力で知られている広く使用されているグラフィックスシステムであるBlenderに基づいて構築されています。研究チームは、自然物体やシーンのカバレッジを拡大するためのプロシージャルルールのライブラリを設計および実装しました。これらのルールはBlenderで利用可能な便利なプリミティブを活用しています。さらに、チームは、BlenderノードグラフをPythonコードに変換する自動変換ツールを含む、プロシージャルルールの作成を簡素化するユーティリティを開発しました。さらに、オブジェクトの深度、遮蔽境界、バウンディングボックス、光学フロー、表面法線、オブジェクトカテゴリ、およびインスタンスセグメンテーションなどの情報を提供するグラウンドトゥルーラベルで合成画像をレンダリングするユーティリティも開発されました。

Infinigenによって生成された合成データの品質を評価するために、チームは広範な実験を実施し、既存の合成データセットおよびジェネレーターと比較しました。これらの実験の結果、Infinigenは外部ソースに頼らずに写実的でオリジナルなアセットやシーンを生成する驚異的な能力を持っていることが示され、現実世界の複雑さをより正確に反映する多様で広範なトレーニングデータセットを生成する可能性を示しています。

Infinigenは、研究者がより広いコミュニティとの協力によって育成することを意図しているオープンソースプロジェクトです。彼らは、すべての現実世界の要素を包括するようにカバレッジを拡大し、その継続的な開発と成長を確保することにコミットしています。Infinigenを無料で提供することで、研究チームは協力を促進し、プロシージャルジェネレーションのさらなる進歩をインスパイアすることを望んでいます。

全体的に、Infinigenの導入は、コンピュータビジョンタスクのための合成データを生成するための重大な進歩を示しています。そのプロシージャルアプローチと写実的なシーンを生成する能力は、既存の合成データセットと現実世界のオブジェクトの複雑さのギャップを埋めることを約束し、さまざまなコンピュータビジョンアプリケーションでモデルをトレーニングするための貴重なツールとなります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAI論文は、言語エージェントのための自然言語とコードの調和を目指して、LemurとLemur Chatを紹介しています

広義では、知的エージェントとは、周囲から収集したデータに基づいて知覚、判断、行動の能力を備えた自律問題解決者です。こ...

データサイエンス

モデルの解釈のマスタリング:パーシャル依存プロットの包括的な解説

モデルの解釈方法を知っていることは、それが奇妙なことをしていないかを理解するために不可欠ですモデルをよりよく知ってい...

データサイエンス

ドキュメント指向エージェント:ベクトルデータベース、LLMs、Langchain、FastAPI、およびDockerとの旅

ChromaDB、Langchain、およびChatGPTを活用した大規模ドキュメントデータベースからの強化された応答と引用されたソース

機械学習

このAIの論文は、テキスト変換グラフとして言語モデルパイプラインを抽象化するプログラミングモデルであるDSPyを紹介しています

言語モデル(LM)は、リサーチャーにデータを少なく使用し、より高度な理解レベルで自然言語処理システムを作成する能力を与...

データサイエンス

「画像認識の再構想:GoogleのVision Transformer(ViT)モデルが視覚データ処理のパラダイムシフトを明らかにする」

画像認識において、研究者や開発者は常に革新的なアプローチを追求してコンピュータビジョンシステムの精度と効率を向上させ...

AIニュース

「トライするためのAIライティングツールトップ50(2023年8月)」

I had trouble accessing your link so I’m going to try to continue without it. Grammarly Grammarlyは文章を向上さ...