「UCLAの研究者が提案するPhyCV:物理に触発されたコンピュータビジョンのPythonライブラリ」
PhyCV Python Library for Physics-inspired Computer Vision proposed by UCLA researchers.
人工知能はコンピュータビジョンの分野で注目すべき進歩を遂げています。その中でも、ディープラーニングという分野では、大量の画像データセットでニューラルネットワークを訓練して、オブジェクトやシーン、イベントを認識・分類することが行われています。これにより、画像認識や物体検出の大幅な改善が実現されています。コンピュータビジョンを他の技術と統合することで、AIの新たな可能性や応用範囲が広がっています。
最新のイノベーションでは、UCLAのJalali-LabがPhyCVという新しいPythonライブラリを開発しました。これは、物理学に基づいたコンピュータビジョンのPythonライブラリとしては初めてのものです。このユニークなライブラリは、物理学の法則や方程式に基づいたアルゴリズムを使用して、画像データを解析します。これらのアルゴリズムは、光が複数の物理的な材料を通過する様子を模倣し、手作業で作られたルールの代わりに数学的な方程式に基づいています。PhyCVのアルゴリズムは、フォトニックタイムストレッチと呼ばれる高速データ取得方法の原理に基づいて構築されています。
PhyCVには、以下の3つのアルゴリズムが含まれています。Phase-Stretch Transform(PST)アルゴリズム、Phase-Stretch Adaptive Gradient-Field Extractor(PAGE)アルゴリズム、Vision Enhancement via Virtual diffraction and coherent Detection(VEViD)アルゴリズムです。
- 「CMUの研究者がBUTD-DETRを導入:言語発話に直接依存し、発話で言及されるすべてのオブジェクトを検出する人工知能(AI)モデル」
- 「バイトダンスAI研究は、連続および離散パラメータのミックスを使用して、高品質のスタイル化された3Dアバターを作成するための革新的な自己教師あり学習フレームワークを提案しています」
- 画像分類において、拡散モデルがGANより優れていることがAI研究で明らかになりましたこの研究では、BigBiGANなどの同等の生成的識別的手法に比べて、拡散モデルが分類タスクにおいて優れた性能を発揮することが示されました
Phase-Stretch Transform(PST)アルゴリズム
PhyCVライブラリのPSTアルゴリズムは、画像中のエッジやテクスチャを特定します。このアルゴリズムは、特定の回折特性を持つ装置を光が通過する様子をシミュレートし、その後の画像を結合的に検出します。このアルゴリズムは、視覚障害を持つ画像に最適であり、MRIスキャンの解像度向上や網膜画像の血管の識別など、さまざまなアプリケーションで使用されています。
Phase-Stretch Adaptive Gradient-Field Extractor(PAGE)アルゴリズム
PAGEアルゴリズムは、物理学の原理を用いて画像中のエッジや方向を特定します。基本的に、PAGEは特定の回折構造を持つ装置を光が通過する過程を模倣し、画像が複素関数に変換されるようにします。エッジに関する情報は、結果の実部と虚部に格納されます。研究者は、PAGEがさまざまな機械学習の前処理方法として利用できると述べています。
Vision Enhancement via Virtual diffraction and coherent Detection(VEViD)アルゴリズム
VEViDアルゴリズムは、低照度やカラー画像を空間的に変動する光場として扱い、回折や干渉検出などの物理的なプロセスを使用して画像を高速化します。これにより、低照度の環境下でのコンピュータビジョンモデルの精度を向上させることができます。VEViD-liteという特定の近似では、秒間200フレームで4Kビデオを高速化することができます。研究チームは、VEViDアルゴリズムを一般的なニューラルネットワークモデルと比較し、VEViDが優れた画像品質を示し、処理速度は数桁から数桁上の向上を実現することを示しています。
PhyCVはGitHubで入手可能であり、pipを使用して簡単にインストールすることができます。PhyCVのアルゴリズムは、より効率的な計算のために実際の物理デバイスにも適用することができます。PhyCVは、確かにコンピュータビジョンの分野で興味深く、重要な開発と言えるでしょう。その結果、AIとコンピュータビジョンの進歩は、幅広い先進的なアプリケーションを推進しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「新しいAI研究は、3D構造に基づいたタンパク質表現学習のためのシンプルで効果的なエンコーダーを提案する」
- 新しいAI研究が、大規模言語モデル(LLMs)の能力を分析するためのプロンプト中心のアプローチを提案しています
- 清華大学の研究者たちは、メタラーニングの枠組みの下で新しい機械学習アルゴリズムを紹介しました
- UCサンタクルーズとSamsungの研究者が、ナビゲーションの決定にChatGPTのようなLLM(言語モデル)で共通センスを活用するゼロショットオブジェクトナビゲーションエージェントであるESCを紹介しました
- 新しいAI研究が、転移学習のためのマルチタスクプロンプトチューニング(MPT)を紹介します
- ネゲヴのベン・グリオン大学の研究者たちは、社会的規範の違反を特定するAIシステムを設計しました
- 中国からの新しいAI研究は、機械学習の手法と質問を組み合わせることで、指導者と学生の関係のつながりに新たな次元を明らかにします