「UCLAの研究者が提案するPhyCV:物理に触発されたコンピュータビジョンのPythonライブラリ」

PhyCV Python Library for Physics-inspired Computer Vision proposed by UCLA researchers.

人工知能はコンピュータビジョンの分野で注目すべき進歩を遂げています。その中でも、ディープラーニングという分野では、大量の画像データセットでニューラルネットワークを訓練して、オブジェクトやシーン、イベントを認識・分類することが行われています。これにより、画像認識や物体検出の大幅な改善が実現されています。コンピュータビジョンを他の技術と統合することで、AIの新たな可能性や応用範囲が広がっています。

最新のイノベーションでは、UCLAのJalali-LabがPhyCVという新しいPythonライブラリを開発しました。これは、物理学に基づいたコンピュータビジョンのPythonライブラリとしては初めてのものです。このユニークなライブラリは、物理学の法則や方程式に基づいたアルゴリズムを使用して、画像データを解析します。これらのアルゴリズムは、光が複数の物理的な材料を通過する様子を模倣し、手作業で作られたルールの代わりに数学的な方程式に基づいています。PhyCVのアルゴリズムは、フォトニックタイムストレッチと呼ばれる高速データ取得方法の原理に基づいて構築されています。

PhyCVには、以下の3つのアルゴリズムが含まれています。Phase-Stretch Transform(PST)アルゴリズム、Phase-Stretch Adaptive Gradient-Field Extractor(PAGE)アルゴリズム、Vision Enhancement via Virtual diffraction and coherent Detection(VEViD)アルゴリズムです。

Phase-Stretch Transform(PST)アルゴリズム

PhyCVライブラリのPSTアルゴリズムは、画像中のエッジやテクスチャを特定します。このアルゴリズムは、特定の回折特性を持つ装置を光が通過する様子をシミュレートし、その後の画像を結合的に検出します。このアルゴリズムは、視覚障害を持つ画像に最適であり、MRIスキャンの解像度向上や網膜画像の血管の識別など、さまざまなアプリケーションで使用されています。

Phase-Stretch Adaptive Gradient-Field Extractor(PAGE)アルゴリズム

PAGEアルゴリズムは、物理学の原理を用いて画像中のエッジや方向を特定します。基本的に、PAGEは特定の回折構造を持つ装置を光が通過する過程を模倣し、画像が複素関数に変換されるようにします。エッジに関する情報は、結果の実部と虚部に格納されます。研究者は、PAGEがさまざまな機械学習の前処理方法として利用できると述べています。

Vision Enhancement via Virtual diffraction and coherent Detection(VEViD)アルゴリズム

VEViDアルゴリズムは、低照度やカラー画像を空間的に変動する光場として扱い、回折や干渉検出などの物理的なプロセスを使用して画像を高速化します。これにより、低照度の環境下でのコンピュータビジョンモデルの精度を向上させることができます。VEViD-liteという特定の近似では、秒間200フレームで4Kビデオを高速化することができます。研究チームは、VEViDアルゴリズムを一般的なニューラルネットワークモデルと比較し、VEViDが優れた画像品質を示し、処理速度は数桁から数桁上の向上を実現することを示しています。

PhyCVはGitHubで入手可能であり、pipを使用して簡単にインストールすることができます。PhyCVのアルゴリズムは、より効率的な計算のために実際の物理デバイスにも適用することができます。PhyCVは、確かにコンピュータビジョンの分野で興味深く、重要な開発と言えるでしょう。その結果、AIとコンピュータビジョンの進歩は、幅広い先進的なアプリケーションを推進しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

MIT教授が議会に語る「AIにおいて私たちは転換点にあります」

アレクサンダー・マドリーは、AIツールが企業によってどのように使用されているかについて、厳密な質問を立てるよう立法者に...

機械学習

「Mini-DALLE3と出会おう:大規模な言語モデルによるテキストから画像へのインタラクティブアプローチ」

人工知能コンテンツ生成の急速な進化、特にテキストから画像へのモデル(T2I)の進展により、高品質で多様性に富み創造的なAIに...

AIニュース

DeepMindのロボキャットに会ってください:複数のロボットを操作するために設計された新しいAIモデル

ロボットは急速にメインストリーム文化に入りつつありますが、彼らは通常、彼らのプログラミングのために彼らの能力が制限さ...

データサイエンス

軌跡予測のためのマップマッチング

この記事では、ノイズのあるGPSセンサーからサンプリングされた過去のトリップのデータベースを使用して、デジタル道路ネット...

機械学習

「言語モデルの微調整を革命化する:NEFTuneのノイズ付き埋め込みで達成する前例のない向上」

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/10/Screen...

機械学習

ニューラルネットワークにおける活性化関数の種類

ニューラルネットワークの活性化関数は、ディープラーニングの重要な部分であり、トレーニングモデルの精度と効率を決定しま...