『NVIDIAの研究者たちが、現行のCTCモデルと互換性のあるGPU加速の重み付き有限状態トランスデューサ(WFST)ビームサーチデコーダを導入』

『NVIDIAの研究者が開発したGPU加速WFSTビームサーチデコーダ』

最近の人工知能の人気を受けて、自動音声認識(ASR)の分野は非常に進歩しました。これによって音声認識技術や人間とコンピュータのインタラクションが大きく変わりました。ASRでは、機械が話された言語をテキストに変換することができます。これは仮想アシスタントや音声文字起こしサービスなど、さまざまなアプリケーションに不可欠です。より正確で効果的なASRシステムのために、研究者たちは潜在的なアルゴリズムを探求しています。

NVIDIAの最近の研究では、研究チームがConnectionist Temporal Classification(CTC)モデルの欠点について調査しました。ASRパイプラインでは、CTCモデルが高い精度を達成するための一流の手法となっています。これらのモデルは、時間的な連続性を解釈する能力が非常に優れており、話された言語の微妙なニュアンスにも対応することができます。しかし、従来のCPUベースのビーム探索デコーディング方法では、CTCモデルの性能が制限されてしまいます。

ビーム探索デコーディングは、話された単語を正確に書き起こすための重要な段階です。従来の方法である貪欲探索法では、各時間ステップでどの出力トークンが最も選ばれる可能性が高いかを音響モデルで決定します。この手法には、コンテキストのバイアスや外部データの処理に伴うさまざまな課題が存在します。

これらの課題を解決するために、研究チームはGPUを利用したWeighted Finite State Transducer(WFST)ビーム探索デコーダーを提案しました。このアプローチは、現在のCTCモデルとの統合をスムーズに行うことを目的として導入されました。このGPUを利用したデコーダーにより、ASRパイプラインのパフォーマンスが向上し、スループットやレイテンシ、発話固有の単語ブースティングなどの機能のサポートも可能になります。提案されたGPUアクセラレーションデコーダーは、パイプラインのスループットが向上し、レイテンシが低いため、ストリーミング推論に特に適しています。

研究チームは、このアプローチをオフラインおよびオンラインの環境でデコーダーをテストすることで評価しました。オフラインのシナリオでは、最新のCPUデコーダーと比較して、GPUアクセラレーションデコーダーは最大7倍のスループットが向上しました。オンラインストリーミングのシナリオでは、GPUアクセラレーションデコーダーは従来と同じまたはさらに高い単語エラーレートを維持しながら、8倍以上のレイテンシの低下を実現しました。これらの結果から、提案されたGPUアクセラレーションWFSTビーム探索デコーダーをCTCモデルと組み合わせることで、効率と精度が大幅に向上することが示されています。

結論として、CTCモデルのCPUベースのビーム探索デコーディングのパフォーマンス制約を克服するために、このアプローチは非常に優れた効果を発揮することができます。提案されたGPUアクセラレーションデコーダーは、オフラインおよびオンラインの両方の状況でCTCモデルのための最速のビーム探索デコーダーです。なぜなら、スループットが向上し、レイテンシが低下し、先進的な機能をサポートするからです。デコーダーをPythonベースの機械学習フレームワークと統合するために、研究チームはGitHubで事前構築されたDLPackベースのPythonバインディングを提供しています。この作業により、提案されたソリューションをPython開発者とMLフレームワークにとって使いやすく、アクセスしやすくすることができます。カーネルウェーブフィールドトランスデューサーデコーダーはC++とPythonのライブラリであり、コードリポジトリはhttps://github.com/nvidia-riva/riva-asrlib-decoderからアクセスできます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAI論文では、新しい個別化留留過程を紹介していますクローズドソース相手からの適応的な学習により、オープンソースLLMsの強化を行います

シンガポールの南洋理工大学とセールスフォース・リサーチの研究者らは、学生モデルの初期の課題解決の試みと教師モデルによ...

データサイエンス

LinkedInのフィード進化:より詳細かつパワフルな機械学習、そして依然として人間も重要

LinkedInのフィードとインフラの最新更新について読むと、人間を中心に据えた原則を技術用語と実装に繋げる方法が解説されて...

AIニュース

クラゲ、猫、ヘビ、宇宙飛行士は何を共有しているのか?数学

新しいアルゴリズムは、動物が体の形状を変えることによって環境を移動するためのさまざまな動きを説明しています

AI研究

ジョンズ・ホプキンス大学とUCサンタクルーズ校の研究者が、画像ベースのAI学習の画期的な進歩であるD-iGPTを発表しました

“` 自然言語処理(NLP)は、GPTシリーズなどの大規模言語モデル(LLMs)の導入により、さまざまな言語的なタスクに対し...

機械学習

「機械学習における特徴エンジニアリングへの実践的なアプローチ」

この記事では、機械学習における特徴学習の重要性と、それを簡単で実践的な手順で実装する方法について説明しました

機械学習

「3D-GPT(3D-指示駆動型モデリングのための人工知能フレームワーク)に会ってください 大規模な言語モデル(LLM)を利用した指示駆動型3Dモデリングのための人工知能フレームワーク」

細心緻密的模型在元宇宙時代的3D內容製作中,重新定義了遊戲、虛擬現實和電影行業中的多媒體體驗。然而,設計師們在耗時的3D...