NVIDIA AI研究者が提案するTied-Lora 低ランクアダプテーション(LoRA)メソッドのパラメータ効率を向上させるための画期的な人工知能アプローチ

NVIDIA AI研究者によるTied-Lora 低ランクアダプテーション(LoRA)メソッドのパラメータ効率向上のための革新的な人工知能アプローチ

Nvidiaの研究者グループが、Tied-LoRAと呼ばれる新しい技術を開発しました。この技術は、Low-rank Adaptation(LoRA)手法のパラメータ効率を改善することを目指しています。この講座では、ウェイトタイイングと選択的トレーニングを使用して、性能とトレーニング可能なパラメータの最適なバランスを見つけます。研究者はさまざまなタスクとベースの言語モデルで実験を行い、効率と性能の間にトレードオフがあることを発見しました。

最近のパラメータ効率の高い微調整技術には、LoRAがあります。これは、低ランク行列の近似を通じてトレーニング可能なパラメータを減らします。AdaLoRAは、動的なランク調整を導入し、アダプタの調整とLoRAを組み合わせたLoRAの拡張です。Kopiczkoによって提案されたVeRAは、凍結行列とトレーニング可能なスケーリングベクトルを介してパラメータを削減します。QLoRAは、メモリ効率の高いLoRAを実現するために量子化されたベースモデルを使用します。本研究では、低ランク重み行列にウェイトタイイングを適用し、さらにパラメータの効率を向上させています。

DownstreamタスクのためのLLMの微調整の計算負荷に対処するために、Tied-LoRAはウェイトタイイングと選択的トレーニングを組み合わせて、LoRAのパラメータ効率を向上させる新しいアプローチです。研究者は、さまざまなスタディとベースの言語モデルで系統的な実験を通じて、さまざまなパラメータトレーニング/フリーズおよびウェイトタイイングの組み合わせを探索しています。研究者は、標準的なLoRA手法と比較して、パラメータのわずか13%のみを利用して同等の性能を実現する特定のTied-LoRA構成を特定しました。

Tied-LoRAは、ウェイトタイイングと選択的トレーニングを組み合わせて、LoRAアプローチのパラメータ効率を向上させる方法です。これは、LoRA内の低ランク行列にウェイトタイイングを適用し、ベースの言語モデルのレイヤー間で同じ結果を共有し、トレーニング可能なパラメータの数を減らすことによるものです。さまざまなパラメータトレーニング/フリーズとウェイトタイイングの組み合わせを探索し、性能とトレーニング可能なパラメータの最適なバランスを実現します。提案されたTied-LoRAの構成は、翻訳や数学的な推論を含むさまざまなタスクで評価され、データ設定全体で効率性を示しています。

さまざまなタスクと2つのベース言語モデルを対象とした実験では、異なるTied-LoRAの構成が効率と性能の間のトレードオフを示しました。特定のTied-LoRA構成であるvBuAは他の構成を凌ぎ、同等のパフォーマンスを実現しました。vBuAは最適なオプションとして特定され、パラメータを87%削減しながらパフォーマンスを維持しました。抽出型質問応答、要約、数学的推論などのタスクでの評価は、Tied-LoRAのパラメータ効率を向上させながら、競争力のあるパフォーマンスを著しく保持していることを示しています。

さまざまなタスクを対象とした実験の結果から、Tied-LoRAはLoRA手法のパラメータ効率を向上させる一つの手法であり、ウェイトタイイングと選択的トレーニングを利用しています。結果は、Tied-LoRAが常識NLI、抽出型QA、要約などの機能を置き換えることができることを示しています。さらに、Tied-LoRAはパフォーマンスを損なうことなく改善されたパラメータ効率を提供し、標準的なLoRAからわずか13%のパラメータのみを利用します。ただし、制限や他のパラメータ効率手法との比較を議論し、将来の探索の潜在的な領域を特定することが重要です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「ポーズマッピング技術によって、脳性麻痺の患者を遠隔で評価することができます」

「機械学習の手法は、ほとんどのモバイルデバイスで動作し、医師のオフィス以外の他の運動障害の評価にも拡張することができ...

AIニュース

Amazon SageMakerを使用して電子メールのスパム検出器を構築する

スパムメール、または迷惑メールとしても知られるものは、一度に多くのユーザーに送られ、しばしば詐欺、フィッシングコンテ...

人工知能

「ジェンAI愛好家が読むべき5冊の本」

イントロダクション 技術がますます進化する中、人工知能(AI)の領域は拡大するだけでなく、ジェネラティブAIという様々なサ...

機械学習

エコジェンに会ってください:生物学者や生態学者のためにリアルな鳥の歌を生成するために設計された新しいディープラーニングのアプローチ

ディープラーニングの登場は、さまざまな分野に大きな影響を与え、さまざまな領域にその影響を広げています。注目すべき応用...

AI研究

CMUとUCサンタバーバラの研究者は、心理療法における認知の歪み検出のための革新的なAIベースの「思考の診断」を提案しています

世界中で、約8人に1人が精神の問題を抱えています。しかし、精神保健障害は、心の専門家の不足、劣悪な治療法、高額な費用、...

機械学習

このAI論文は、拡散モデルのコンセプトを自身の知識を使って消去するためのモデルの重みを微調整する新しい方法を提案しています

近年、優れた画像品質と無限の生成能力から、モダンなテキストから画像を生成するモデルが注目を集めています。これらのモデ...