「非営利研究者による人工知能(AI)の進展リスト」

『美容とファッションの分野における人工知能(AI)の進展リスト』

去年遅くから今年にかけて、2023年はAIの人々がAIアプリケーションを作成するのに最適な時期であり、これは非営利の研究者によるAIの進歩リストのおかげです。以下にそのリストを示します。

ALiBi

ALiBiはTransformersにおけるテキストの推測問題に効率的に取り組む方法であり、学習に使用されたものよりも長いテキストシーケンスを推測する際に適用されます。ALiBiは実行時間に影響を与えず、追加のパラメータも必要とせず、既存のTransformerコードの数行を変更するだけで推測を行うことができる実装が容易なメソッドです。

Scaling Laws of RoPE-based Extrapolation

この方法は、Transformerの推測能力を向上させるためのフレームワークです。研究者は、Rotary Position Embedding(RoPe)ベースのLLMを事前学習の文脈長でより小さなまたは大きなベースで微調整すると、より良いパフォーマンスが得られることを発見しました。

FlashAttention

Transformersは、テキスト情報を処理できる強力なモデルですが、大規模なテキストシーケンスで作業する場合には大量のメモリが必要とされます。FlashAttentionは、既存の基準よりも高速でTransformerをトレーニングする、入出力(IO)を考慮したアルゴリズムです。

Branchformer

Conformers(Transformerの一種)は音声処理に非常に効果的です。それらは畳み込み層とセルフアテンション層を順次使用するため、そのアーキテクチャは解釈しづらいものとなっています。Branchformerは、エンコーダの代替手法であり、柔軟で解釈可能であり、エンドツーエンドの音声処理タスクにおいて依存関係をモデル化するための並列ブランチを持っています。

Latent Diffusion

Diffusion Modelsは、多くの画像処理タスクで最先端のパフォーマンスを達成するものの、計算が非常に負荷がかかります。Latent Diffusion Modelsは、Diffusion Modelsのバリエーションであり、より少ないリソースを必要としながら、さまざまな画像ベースのタスクで高いパフォーマンスを実現することができます。

CLIP-Guidance

CLIP-Guidanceは、大規模なラベル付きデータセットを必要としないテキストから3D生成の新しい方法です。CLIPなどの事前学習されたビジョン言語モデルを活用し、テキストの説明と画像を関連付けることを学ぶことができるため、研究者はそれを使用して3Dオブジェクトのテキストの説明から画像を生成します。

GPT-NeoX

GPT-NeoXは、200億のパラメータで構成される自己回帰言語モデルです。様々な知識ベースや数学タスクで合理的なパフォーマンスを発揮します。モデルの重みは一般に公開されており、さまざまな分野での研究を促進するために利用できます。

QLoRA

QLoRAはメモリ使用量を効率的に減らす細調整手法であり、48GBの単一のGPU上で65兆のパラメータモデルを最適なタスクパフォーマンスを維持しながら完全な16ビット精度で細調整することができます。QLoRAの細調整を通じて、モデルは状態-of-the-artの結果を達成し、以前のSoTAモデルを上回ることができます。

RMKV

Receptance Weighted Key Value(RMKV)モデルは、Transformerと再帰ニューラルネットワーク(RNN)の強みを活用しながら、同時にそれらの主な欠点を回避する新しいアーキテクチャです。RMKVは、同様のサイズのTransformerと比較可能なパフォーマンスを提供し、将来的により効率的なモデルの開発の道を開いています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「緑を守る:加速されたアナリティクスがコストと炭素排出を削減する」

企業は、加速されたコンピューティングが収益向上に貢献するだけでなく、地球にポジティブな影響を与えることを発見していま...

人工知能

多段階回帰モデルとシンプソンのパラドックス

「データ分析は、その職業名からも明らかなように、データサイエンティストの仕事の重要な一部であり、記述統計や単純な回帰...

AI研究

「Pythia 詳細な研究のための16個のLLMスイート」

Pythiaは、Eleuther AIによる16の大規模言語モデルのスイートですトレーニングとスケーリング中に自己回帰的な大規模言語モデ...

機械学習

Google AIは、埋め込みモデルのスケーラビリティの利点と、クロスアテンションモデルの品質を効果的に組み合わせた新しいクラスタリングアルゴリズムを紹介します

画像: クラスタリングは、データマイニングや教師なし機械学習の領域で基本的かつ広範な課題として用いられています。その目...

人工知能

GPT-4の詳細がリークされました!

OpenAIはGPT-4について何を隠しているのか?

AI研究

マイクロソフトリサーチとジョージア工科大学の研究者が、言語モデルの幻覚の統計的な境界を公表しました

最近、言語モデルで浮かび上がった主要な問題の一つは、言語モデル(LM)が存在しない記事タイトルへの言及を含む誤った情報...