「非営利研究者による人工知能(AI)の進展リスト」

『美容とファッションの分野における人工知能(AI)の進展リスト』

去年遅くから今年にかけて、2023年はAIの人々がAIアプリケーションを作成するのに最適な時期であり、これは非営利の研究者によるAIの進歩リストのおかげです。以下にそのリストを示します。

ALiBi

ALiBiはTransformersにおけるテキストの推測問題に効率的に取り組む方法であり、学習に使用されたものよりも長いテキストシーケンスを推測する際に適用されます。ALiBiは実行時間に影響を与えず、追加のパラメータも必要とせず、既存のTransformerコードの数行を変更するだけで推測を行うことができる実装が容易なメソッドです。

Scaling Laws of RoPE-based Extrapolation

この方法は、Transformerの推測能力を向上させるためのフレームワークです。研究者は、Rotary Position Embedding(RoPe)ベースのLLMを事前学習の文脈長でより小さなまたは大きなベースで微調整すると、より良いパフォーマンスが得られることを発見しました。

FlashAttention

Transformersは、テキスト情報を処理できる強力なモデルですが、大規模なテキストシーケンスで作業する場合には大量のメモリが必要とされます。FlashAttentionは、既存の基準よりも高速でTransformerをトレーニングする、入出力(IO)を考慮したアルゴリズムです。

Branchformer

Conformers(Transformerの一種)は音声処理に非常に効果的です。それらは畳み込み層とセルフアテンション層を順次使用するため、そのアーキテクチャは解釈しづらいものとなっています。Branchformerは、エンコーダの代替手法であり、柔軟で解釈可能であり、エンドツーエンドの音声処理タスクにおいて依存関係をモデル化するための並列ブランチを持っています。

Latent Diffusion

Diffusion Modelsは、多くの画像処理タスクで最先端のパフォーマンスを達成するものの、計算が非常に負荷がかかります。Latent Diffusion Modelsは、Diffusion Modelsのバリエーションであり、より少ないリソースを必要としながら、さまざまな画像ベースのタスクで高いパフォーマンスを実現することができます。

CLIP-Guidance

CLIP-Guidanceは、大規模なラベル付きデータセットを必要としないテキストから3D生成の新しい方法です。CLIPなどの事前学習されたビジョン言語モデルを活用し、テキストの説明と画像を関連付けることを学ぶことができるため、研究者はそれを使用して3Dオブジェクトのテキストの説明から画像を生成します。

GPT-NeoX

GPT-NeoXは、200億のパラメータで構成される自己回帰言語モデルです。様々な知識ベースや数学タスクで合理的なパフォーマンスを発揮します。モデルの重みは一般に公開されており、さまざまな分野での研究を促進するために利用できます。

QLoRA

QLoRAはメモリ使用量を効率的に減らす細調整手法であり、48GBの単一のGPU上で65兆のパラメータモデルを最適なタスクパフォーマンスを維持しながら完全な16ビット精度で細調整することができます。QLoRAの細調整を通じて、モデルは状態-of-the-artの結果を達成し、以前のSoTAモデルを上回ることができます。

RMKV

Receptance Weighted Key Value(RMKV)モデルは、Transformerと再帰ニューラルネットワーク(RNN)の強みを活用しながら、同時にそれらの主な欠点を回避する新しいアーキテクチャです。RMKVは、同様のサイズのTransformerと比較可能なパフォーマンスを提供し、将来的により効率的なモデルの開発の道を開いています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「IBMが人工知能を搭載した脅威検知および対応サービスを発表し、サイバーセキュリティを革命化する」

サイバーセキュリティの脅威が絶えず進化する中で、組織はますます途方もない課題に直面しています-セキュリティアラートの圧...

AI研究

新しいMicrosoft AI研究では、HMD-NeMoを提案していますこの新しい手法では、手が部分的にしか見えていない場合でも、信憑性のある正確な全身運動生成に取り組んでいます

ミックスリアリティシナリオにおける没入型体験の領域では、正確かつ信憑性のある全身アバターの動きを生成することが持続的...

機械学習

「FLM-101Bをご紹介します:1010億パラメータを持つ、オープンソースのデコーダのみのLLM」

最近、大規模言語モデル(LLM)はNLPとマルチモーダルタスクで優れた成績を収めていますが、高い計算コストと公正な評価の困...

データサイエンス

「解釈力を高めたk-Meansクラスタリングの改善」

「クラスタリングは、一組のオブジェクトをグループ化する非監督学習のタスクであり、同じグループ内のオブジェクトには他の...

機械学習

「AGENTS内部 半自律LLMエージェントを構築するための新しいオープンソースフレームワーク」

「自律エージェントは、ファウンデーションモデルエコシステムで最も人気のあるトピックの一つですAutoGPTやBabyAGIなどのプ...

データサイエンス

大きな言語モデル:TinyBERT - 自然言語処理のためのBERT蒸留

最近、大規模言語モデルの進化が急速に進んでいますBERTは最も人気のある効率的なモデルの1つとなり、高い精度でさまざまなNL...