「3Dシーン表現の境界を破る:新しいAIテクニックによる高速かつ効率的なレンダリングとストレージ要件の削減によるゲームの変革」
「3Dシーン表現の領域を超える:新しいAIテクニックによる高速かつ効率的なレンダリングとストレージ要件の削減によるゲームの進化」
NeRFは、連続的な3Dボリュームとしてシーンを表します。離散的な3Dメッシュやポイントクラウドの代わりに、シーン内の任意の3Dポイントの色と密度の値を計算する関数を定義します。異なる視点からキャプチャされた複数のシーン画像でニューラルネットワークをトレーニングすることにより、NeRFは観測された画像と整合性のある正確な表現を生成する方法を学習します。
NeRFモデルがトレーニングされると、任意のカメラの視点からシーンの写真のような新しいビューを合成し、高品質のレンダリング画像を作成できます。NeRFは、従来の3D再構築方法では難しい複雑な照明効果、反射、透明性を含む高忠実度のシーンの詳細を捉えることを目指しています。
NeRFは、高品質な3D再構築とシーンの新しいビューのレンダリングにおいて有望な結果を示し、コンピュータグラフィックス、仮想現実、拡張現実などの分野で精度の高い3Dシーン表現が重要なアプリケーションに役立つものとなっています。ただし、大規模かつ詳細なシーンをキャプチャするために、NeRFは記憶容量や処理能力の要件による計算上の課題も抱えています。
- 「Meditronを紹介:LLaMA-2に基づいたオープンソースの医学用大規模言語モデル(LLM)のスイート」
- ノースイースタン大学およびMITのこのAIの論文では、拡散モデルにおける画像生成制御のための解釈可能なコンセプトスライダーが開発されています
- Google DeepMind(グーグルディープマインド)が「GNoME(グノーム)」を発表:新素材の安定性を予測し、探索の速度と効率を劇的に向上させる新しいディープラーニングツール
3Dガウス描画では、高品質のレンダリング画像を維持するために多数の3Dガウスが必要とされ、これには多大なメモリとストレージが必要とされます。ガウス点の数を削減しながら性能を犠牲にせずにガウス属性を圧縮することは効率を高めます。成均館大学の研究者は、高いパフォーマンスを保持しながらガウスの数を大幅に削減する学習可能なマスク戦略を提案しています。
また、彼らは球面調和関数に頼らず、グリッドベースのニューラルフィールドを使用することで、ビュー依存の色のコンパクトで効果的な表現を提案しています。彼らの研究は、高いパフォーマンス、高速トレーニング、コンパクトさ、リアルタイムの描画を実現する3Dシーン表現の包括的なフレームワークを提供します。
彼らは実際のシーンや合成シーンを含むさまざまなデータセットでコンパクトな3Dガウス表現を幅広くテストしています。データセットに関係なく、実験全体で、3Dガウス描画と比較してストレージが10倍以上削減され、シーン表現の品質を維持しながら描画速度が向上することが一貫して確認されました。
ポイントベースの手法は3Dシーンの描画に広く使用されています。最も単純な形式はポイントクラウドです。しかし、ポイントクラウドは穴やエイリアシングなどの視覚的なアーティファクトを引き起こす可能性があります。研究者たちは、ポイントをラスタ化ベースのポイントスプラッティングと微分可能なラスタ化を介して処理することによってこれを軽減する点ベースのニューラルレンダリング手法を提案しました。
NeRFの未来は、3Dシーンの理解とレンダリングを革新する可能性を秘めており、現在の研究の取り組みがさらなる範囲を拡大し、効率的でリアルなさまざまなドメインでの応用を可能にすることが期待されています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「PGXMANを紹介する:PostgreSQLの拡張機能マネージャーとの出会い」
- 「言語モデルにおける連鎖思考推論の力を明らかにする 認知能力、解釈可能性、自律言語エージェントに関する包括的な調査」
- 「GPUの加速なしで大規模なシーンをリアルタイムでマッピングできるのか?このAI論文は、高度なLiDARベースの位置特定とメッシュ作成のために「ImMesh」を紹介します」
- 「AIは本当に私たちの感情を理解できるのか? このAIの論文では、ビジョン・トランスフォーマーモデルを用いた高度な顔の感情認識について探求されています」
- 「人工的な汎用知能(Artificial General Intelligence; AGI)の探求:AIが超人力を達成したとき」
- ロボットたちが助けを求める方法を学んでいるとはどういうことか
- 開発者の生産性向上:DeloitteのAmazon SageMaker Canvasを用いたノーコード/ローコード機械学習の活用方法