このAI論文は、概念関連伝播(CRP)を用いて、「どこ」や「何」を解き明かすための深層学習モデルの理解に新たなアプローチを提案しています

『「どこ」や「何」を解き明かすための深層学習モデルの理解に新たなアプローチ』:概念関連伝播(CRP)を用いたAI論文の提案

“`html

機械学習と人工知能の分野は非常に重要になっています。日々進歩している新たな技術があります。この領域はあらゆる分野に影響を与えています。洗練されたニューラルネットワークアーキテクチャを利用することで、各セクターで非常に高い精度を誇るモデルがあります。

その正確な性能にもかかわらず、これらのニューラルネットワークの動作を完全に理解する必要があります。これらのモデル内で属性選択と予測を司るメカニズムを知り、結果を観察および解釈する必要があります。

ディープニューラルネットワーク(DNN)の複雑で非線形な性質は、望ましくない特徴にバイアスを示す可能性のある結論につながることがしばしばあります。彼らの論理の固有の不透明性は、さまざまな関連するアプリケーション領域で機械学習モデルを適用することが困難になります。AIシステムがどのように意思決定を行うかを理解するのは簡単ではありません。

そのため、Thomas Wiegand教授(Fraunhofer HHI、BIFOLD)、Wojciech Samek教授(Fraunhofer HHI、BIFOLD)、Sebastian Lapuschkin博士(Fraunhofer HHI)は、論文で関連性伝播(CRP)の概念を紹介しました。この革新的な手法は、属性マップから人間に理解可能な説明までの経路を提供し、AIの個々の意思決定を人間が理解できる概念を通じて解明することを可能にします。

彼らはCRPを、既存の説明モデルを補完し豊かにするディープニューラルネットワークの高度な説明手法として強調しています。CRPは、個々の予測に関する「どこで」と「何を」の質問に答えるためのローカルとグローバルな視点を統合することで、AIのアイデアを使用し、それらが入力に与える影響を考慮する個別のニューラルネットワークセグメントを明らかにします。

その結果、CRPは人々が理解できる言葉でAIによる意思決定を説明します。

研究者たちは、この説明可能性のアプローチがAIの入力から出力までの予測プロセスを調査することを強調しています。研究グループは、AIアルゴリズムが判断を下す方法を示すためにヒートマップを使用する技術をすでに開発しています。

Fraunhofer HHIのExplainable Artificial Intelligence研究グループの責任者であるSebastian Lapuschkin博士は、新しい技術について詳しく説明しています。彼は、CRPが説明を、全てのピクセルの存在する入力空間(イメージがある場所)から、ネットワークの上位層によって形成された意味豊かな概念空間へ転送すると説明しました。

研究者たちはさらに、CRPとして知られるAIの説明可能性の次の段階が、AIモデルの研究、評価、パフォーマンスの向上のための新しい機会を開拓していると述べています。

CRPベースの研究を使用して、モデルの設計とアプリケーションドメインを探求することによって、モデル内のアイデアの表現と構成の洞察と、予測におけるそれらの影響の定量的評価を取得することができます。これらの調査は、CRPの力を活用してモデルの複雑なレイヤーに入り込み、概念の景色を解明し、さまざまなアイデアが予測的な結果に与える定量的影響を評価します。

“`

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

「FinTech API管理におけるAIの力を解き放つ:製品マネージャーのための包括的なガイド」

この包括的なガイドでは、AIが金融技術のAPI管理に果たす変革的な役割を探求し、各セクションごとに実世界の例を提供していま...

人工知能

「Bard」を活用するための10の役立つ方法

「アイデアのブレストから旅行のスケジュール作成まで、Bardがあなたの仕事を手助けする10の方法をチェックしてみてください」

人工知能

「ChatGPTの使い方:高度なプロンプトエンジニアリングの方法」

「ChatGPTからより良い結果を得たい場合は、より良いChatGPTプロンプトの書き方を学ぶ必要があります以下には7つの実行可能な...

AIニュース

大ニュース:Google、ジェミニAIモデルのローンチを延期

予想外の展開となり、Googleは最先端のAIモデル「Gemini」の高い期待を集めるローンチを来年の1月まで延期することを選びまし...

AI研究

「ジョンズ・ホプキンス大学の研究者たちは、がんに関連するタンパク質フラグメントを正確に予測することができる深層学習技術を開発しました」

ジョンズ・ホプキンス大学のエンジニアとがん研究者は、最先端の深層学習技術を駆使して、個別のがん治療における画期的な突...

AI研究

カールスルーエ工科大学(KIT)の研究者たちは、深層学習を用いた降水マッピングに取り組み、空間および時間の分解能向上に向けて進化させました

気候変動のため、特に激しい降水イベントがより頻繁に起こると予想されています。洪水や地滑りなどの多くの自然災害は、激し...