「火星の地表起伏を予測するための単眼深度推定」

Monocular depth estimation for predicting Martian surface topography

モノキュラー深度推定モデルの別の応用

Photo by NASA on Unsplash

単一の画像から表面の高度を推定するためのいくつかの手法が文献で議論されています。以前の記事で、モノキュラー推定モデルを使用して単一の2D画像の深度を予測することが可能であることを説明しました。ただし、モデルへの入力が特定の表面の画像である場合、予測はデジタル高度モデル(DEM)を表します。私の最初の研究論文では、ディープラーニングアプローチを使用して、2Dグレースケール画像から火星の表面のDEMを取得する方法を示しました。提案するアイデアをよりよく理解するために、まずここでプロジェクトのデモを試してみることをお勧めします。

導入

別の話で詳しく説明されているように、表面のDEMは、各セルが表面上の特定の点の標高を格納する標高値のグリッドです:

Graphic visualization of a DEM. NSIDC, CC BY 2.0, via Wikimedia Commons

DEMは通常、カラーマップを使用してグラフィカルに表現されます。上の画像では、最も高い地点が赤で、最も低い地点が紫です。

一方、モノキュラー深度推定モデルは、画像を撮影したカメラ(たとえば衛星のカメラ)から各ピクセルの距離(深度)を推定するために使用されます:

Depth prediction of a bedroom. Input image from NYU-Depth V2.

アイデアは、表面の衛星画像をモノキュラー深度推定モデルに入力することです。これにより、その表面のDEMを予測することが可能になります。なぜなら、出力の各点が距離(深度)を表し、高度は深度を使用して導かれるからです(後述します)。

この記事で議論されている方法は、火星だけでなく、他の表面にも使用することができます。

UAHiRISE

High-Resolution Imaging Science Experiment(HiRISE)は、Mars Reconnaissance Orbiter(火星探査軌道衛星)に搭載されたカメラです。この衛星はサポートを提供します…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

『ジュリエット・パウエル&アート・クライナー、The AI Dilemma – インタビューシリーズの著者』

『AIのジレンマ』は、ジュリエット・パウエルとアート・クライナーによって書かれましたジュリエット・パウエルは、著者であ...

人工知能

Aaron Lee、Smith.aiの共同設立者兼CEO - インタビューシリーズ

アーロン・リーさんは、Smith.aiの共同創業者兼CEOであり、AIと人間の知性を組み合わせて、24時間365日の顧客エンゲージメン...

人工知能

「ジャスティン・マクギル、Content at Scaleの創設者兼CEO - インタビューシリーズ」

ジャスティンは2008年以来、起業家、イノベーター、マーケターとして活動しています彼は15年以上にわたりSEOマーケティングを...

人工知能

「アナコンダのCEO兼共同創業者、ピーターウォングによるインタビューシリーズ」

ピーター・ワンはAnacondaのCEO兼共同創設者ですAnaconda(以前はContinuum Analyticsとして知られる)を設立する前は、ピー...

人工知能

「LeanTaaSの創設者兼CEO、モハン・ギリダラダスによるインタビューシリーズ」

モーハン・ギリダラダスは、AIを活用したSaaSベースのキャパシティ管理、スタッフ配置、患者フローのソフトウェアを提供する...

人工知能

ギル・ジェロン、Orca SecurityのCEO&共同創設者-インタビューシリーズ

ギル・ゲロンは、オルカ・セキュリティのCEO兼共同設立者ですギルは20年以上にわたりサイバーセキュリティ製品をリードし、提...