「本番環境での機械学習モデルのモニタリング:なぜ必要であり、どのように行うか?」

Monitoring Machine Learning Models in Production Why and How?

進化する世界で私たちのモデルはどのように影響を受けるのか?ドリフトの例に焦点を当てた分析とPythonベースの監視戦略の実装

機械学習(ML)モデルの開発はしばしば時間がかかり、技術的な専門知識が必要です。データサイエンスの愛好家として、探索と分析のためのデータセットを取得したとき、多様な最先端のモデルを使用したり、データ中心の戦略を採用したりして、トレーニングと検証に取り組みます。全てのタスクが完了したかのように、モデルのパフォーマンスを最適化すると非常に充実感を感じます。

しかし、モデルを本番環境に展開した後、モデルのパフォーマンス低下や劣化が起こる要因はたくさんあります。

Adrien Delforge氏による写真、Unsplash

#1 トレーニングデータはシミュレーションによって生成されます

データサイエンティストは、本番データにアクセスする際に制約に直面することがよくあり、代わりにシミュレーションやサンプルデータを使用してモデルをトレーニングします。データエンジニアは、トレーニングデータの表現性(スケールや複雑さ)を確保する責任を持っていますが、トレーニングデータはまだある程度本番データから逸脱しています。また、データ収集やラベリングなどの上流データ処理において、システマティックな欠陥が発生するリスクもあります。これらの要因は、追加の有用な入力特徴の抽出に影響を与えるか、モデルの一般化能力を妨げる可能性があります。

例:金融業界の投資家データや医療業界の患者情報は、セキュリティやプライバシーの懸念から、しばしばシミュレーションされます。

#2 新しい本番データは新しいデータ分布を示します

時間の経過とともに、入力特徴の特性も変化することがあります。例えば、年齢層、所得範囲、その他の顧客の人口統計における変化です。データソースそのものがさまざまな理由で完全に置き換えられることもあります。モデル開発プロセスでは、最適化はトレーニングデータ内の大多数のグループからのパターンの学習と捕捉に依存しています。しかし、時間の経過とともに、以前の大多数は本番データで少数派に変わり、元々の静的なモデルは最新の本番ニーズに対応するのに不十分になります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Apple M1とM2のパフォーマンス- SSLモデルのトレーニングにおいて」

新しいAppleチップを使用してMLモデルをトレーニングするためのベンチマークの数はまだ少ないですさらに、ほとんどの結果は、...

機械学習

アップステージがSolar-10.7Bを発表:一回の会話用に深いアップスケーリングと微調整された精度を持つ先駆的な大規模言語モデルを実現

韓国のAI企業、Upstageの研究者たちは、言語モデルのパフォーマンスを最大化し、パラメータを最小化するという課題に取り組ん...

機械学習

GAN(Generative Adversarial Networks)

GAN(Generative Adversarial Networks)とは、まずはGANが何かを理解しましょう私は既にジェネレーティブAIについてのブログ...

データサイエンス

データ駆動型生成AI:データと分析の利点

ジェネラティブAIは、データと分析の領域を革命化し、生産性を高め、納期を短縮すると位置付けられています

AIニュース

「IIT卒業生のAIによるカバーレターが皆を爆笑させる」

事件の風刺的な展開の中で、あるIIT(インド工科大学)の卒業生が人工知能を活用してカバーレターを作成しようとした結果、大...

AIニュース

ユーザーエクスペリエンスの向上:インタラクティブなチャットボットにOpenAIアシスタントAPIを実装する

イントロダクション OpenAIによるChatGPTとGPT 3モデルの導入により、世界はAIを統合したアプリケーションの使用にシフトしま...