MLflowを使用して機械学習の実験を追跡し、可視化する方法

MLflowを使って機械学習の実験を追跡・可視化する方法

MLflow — 機械学習ライフサイクルを管理するためのオープンソースプラットフォーム。

イントロダクション

機械学習では、無料の昼食はありません。特定の問題に対して最適なデータ前処理や機械学習アルゴリズムがわかりません。一つだけのベストなアルゴリズムは存在しません。そのため、適切な結果を得るためには実験が典型的な手法です。効果的な機械学習実験を行うためには、各実験の実行を追跡、記録、可視化する必要があります。

MLflow ui visualization example (gif by author)

目次

— 実験の追跡とは何ですか?

なぜ — 実験の追跡は重要ですか?

どのように — 実施する方法は?

MLFlowを使用した実験の追跡の実践デモ

ML実験の追跡とは何ですか?

実験の追跡とは、ML実験から関連する情報をすべて追跡するプロセスです。以下に示すものなどが含まれます:

  • ソースコード
  • 環境
  • データ
  • モデル
  • 中間結果
  • ハイパーパラメータ
  • メトリクス
  • など

覚えておく必要のあるいくつかの用語があります:

  • ML実験:MLモデルを構築する反復プロセス
  • 実験ラン:ML実験の1回の試行
  • ランアーティファクト:ML実行に関連する任意のファイルデータ
  • 実験のメタデータ:実験に関連するすべての情報

なぜ — 実験の追跡は重要ですか?

実験の追跡はいくつかの理由から重要です:

  • 再現性:データ、モデル、ハイパーパラメータ、ランダムシードなどのすべての関連する実験の設定を記録することで、必要に応じて同じ環境を再現し、実験を再実行できます。これにより、結果を他の人が再現して検証できます。
  • 協力:組織化することができます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「ウェブポータル開発を加速させる8つの戦略」

この記事では、ウェブポータルの開発者が直面する頻繁な問題について探求します:品質を損なうことなく、開発プロセスを加速...

人工知能

「ディープマインドのアルファコードの力を解き放つ:コードライティングの革命」

導入 プログラミングの常に進化し続ける世界では、先を行くことが成功への鍵です。DeepMindのAlphaCodeは、革新的なAIパワー...

データサイエンス

モデルの解釈のマスタリング:パーシャル依存プロットの包括的な解説

モデルの解釈方法を知っていることは、それが奇妙なことをしていないかを理解するために不可欠ですモデルをよりよく知ってい...

AIニュース

Android 14:より多様なカスタマイズ、制御、アクセシビリティ機能

「Android 14は個人的で保護的な機能を備え、ユーザーを最優先し、彼らの個性を祝福するためのものです」

AI研究

「バイトダンスAI研究は、連続および離散パラメータのミックスを使用して、高品質のスタイル化された3Dアバターを作成するための革新的な自己教師あり学習フレームワークを提案しています」

デジタルワールドへの重要な入り口は、社交、ショッピング、ゲームなどの活動において現代の生活でより一般的になっており、...

データサイエンス

ドメイン適応:事前に学習済みのNLPモデルの微調整

ドメイン適応のために事前学習済みNLPモデルの微調整方法を学びましょう特定の文脈でのパフォーマンスと精度を向上させますス...