MLflowを使用して機械学習の実験を追跡し、可視化する方法

MLflowを使って機械学習の実験を追跡・可視化する方法

MLflow — 機械学習ライフサイクルを管理するためのオープンソースプラットフォーム。

イントロダクション

機械学習では、無料の昼食はありません。特定の問題に対して最適なデータ前処理や機械学習アルゴリズムがわかりません。一つだけのベストなアルゴリズムは存在しません。そのため、適切な結果を得るためには実験が典型的な手法です。効果的な機械学習実験を行うためには、各実験の実行を追跡、記録、可視化する必要があります。

MLflow ui visualization example (gif by author)

目次

— 実験の追跡とは何ですか?

なぜ — 実験の追跡は重要ですか?

どのように — 実施する方法は?

MLFlowを使用した実験の追跡の実践デモ

ML実験の追跡とは何ですか?

実験の追跡とは、ML実験から関連する情報をすべて追跡するプロセスです。以下に示すものなどが含まれます:

  • ソースコード
  • 環境
  • データ
  • モデル
  • 中間結果
  • ハイパーパラメータ
  • メトリクス
  • など

覚えておく必要のあるいくつかの用語があります:

  • ML実験:MLモデルを構築する反復プロセス
  • 実験ラン:ML実験の1回の試行
  • ランアーティファクト:ML実行に関連する任意のファイルデータ
  • 実験のメタデータ:実験に関連するすべての情報

なぜ — 実験の追跡は重要ですか?

実験の追跡はいくつかの理由から重要です:

  • 再現性:データ、モデル、ハイパーパラメータ、ランダムシードなどのすべての関連する実験の設定を記録することで、必要に応じて同じ環境を再現し、実験を再実行できます。これにより、結果を他の人が再現して検証できます。
  • 協力:組織化することができます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Microsoft AIが意図せずに秘密の情報を公開し、3年間にわたって38TBの機密データへのアクセス権を提供しました」

「過剰供給されたSASトークンが、約3年間にわたってGitHub上で38TBもの大量の個人データを公開していた物語」

AIニュース

「ジェネレーティブAIによる先進的なトランスフォーマーで創造性を解き放つ」

導入 人工知能の絶え間なく進化する風景において、近年際立った存在となっている名前があります。それがトランスフォーマーと...

AIニュース

OpenAIを使用してカスタムチャットボットを開発する

はじめに チャットボットは自動化されたサポートと個別の体験を提供し、ビジネスが顧客とつながる方法を革新しました。人工知...

人工知能

「コーディング経験なしでAIエージェンシーを始める方法」

「次の10年で最も大きなビジネスの機会の1つを紹介させてください」

AIニュース

「Microsoft Azureは、企業向けAIのためのChatGPTをリリースしました」

マイクロソフトAzureは、ChatGPTを導入することにより、エンタープライズAIの大きな飛躍を遂げています。Azure OpenAI Servic...

AI研究

「産業界が音声AIを活用して消費者の期待に応えている方法」

急速な技術の進歩のおかげで、消費者は前例のないほどの便利さと効率性に慣れてきました。 スマートフォンを使えば、商品を検...