このAI論文は、オープンソースライブラリの既存の機能を最大限に活用するために開発された新しい人工知能アプローチ、ML-BENCHを提案しています

「既存のオープンソースライブラリの機能を最大限に活用する新しいアプローチ、ML-BENCHを提案するAI論文」

LLMモデルは、さまざまなプログラミング関連の活動を実行できる強力な言語エージェントとして、ますます展開されています。これらの驚異的な進展にもかかわらず、静的な実験環境でこれらのモデルが示した能力と、実際のプログラミングシナリオの絶えず変化する要求との間には、相当な隔たりがあります。

標準のコード生成ベンチマークは、LLMがゼロから新しいコードを生成する能力をテストします。しかし、プログラミングの慣行は滅多にすべてのコードコンポーネントをゼロから生成する必要はありません。

実世界のアプリケーションのコードを書く際には、既存の公開されているライブラリを使用することが一般的な慣習です。これらの開発済みライブラリは、さまざまな課題に対する堅牢で実践済みの回答を提供します。そのため、コードLLMの成功は、機能の生成だけでなく、正しいパラメータの使用方法でオープンソースライブラリから派生したコードの実行能力など、さまざまな方法で評価されるべきです。

イェール大学、南京大学、北京大学の新しい研究では、ML-BENCHという現実的で包括的なベンチマークデータセットを提案しています。このデータセットは、LLMの利用者の指示を理解し、GitHubのリポジトリをナビゲートし、実行可能なコードを生成する能力を評価するものです。ML-BENCHは、指示の要件を満たす高品質で指示可能な正解コードを提供しています。ML-BENCHは、130のタスクと14の人気のある機械学習のGitHubリポジトリからなる9,444の例を含んでいます。

研究者たちは、Pass@kとParameter Hit Precisionを調査の指標として使用しています。これらのツールを使用して、彼らはGPT-3.5-16k、GPT-4-32k、Claude 2、およびCodeLlamaがML-BENCH環境での能力を探求します。ML-BENCHはLLMのための新しいテストを提案しています。経験的な結果は、GPTモデルとClaude 2がCodeLlamaを大きく上回っていることを示しています。GPT-4は他のLLMよりも明らかに性能が向上していますが、実験でのタスクのうち39.73%しか完了していません。他のよく知られたLLMは幻覚を経験し、期待通りの成果を上げていません。調査の結果からは、LLMはコードの記述だけでなく、長いドキュメンテーションの理解も必要としていることが示唆されています。その主要な技術的貢献は、彼らのエラー分析を通じて発見された不足点に対処するために設計された自律型の言語エージェントであるML-AGENTの提案です。これらのエージェントは、人間の言語と指示を理解し、効率的なコードを生成し、困難なタスクを遂行する能力を持っています。

ML-BenchとML-Agentは、自動化された機械学習プロセスの最先端の進歩を表しています。研究者たちは、この成果が他の研究者や実務家にも興味を持ってもらえることを期待しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

ベイズ深層学習への優しい入門

「確率的プログラミングの興奮する世界へようこそ!この記事は初心者向けのベイズ深層学習とディープニューラルネットワーク...

機械学習

「AIと産業のデジタル化の時代に、開かれたUSDに開発者が注目」 Note OpenUSD refers to an open-source software library called USD (Universal Scene Description), which is commonly used in computer graphics and animation.

スマートファクトリーから次世代の鉄道システムまで、世界中の開発者と企業は、あらゆるスケールで産業のデジタル化の機会を...

機械学習

「メタに立ち向かい、開発者を強力にサポートするために、アリババがAIモデルをオープンソース化」

重要な進展として、中国の電子商取引巨人であるアリババが、強力な人工知能モデルをサードパーティの開発者に公開することを...

AI研究

東京理科大学の研究者は、材料科学におけるこれまで知られていなかった準結晶相を検出する深層学習モデルを開発しました

物質における新しい結晶構造を発見する探求は、電子から製薬まで幅広い産業において重要な意味を持ち、科学的な探求の中核と...

機械学習

ヴェクタラは、AI言語モデルの「幻覚」をベンチマーク化し、対処するための画期的なオープンソースモデルを立ち上げます

急速に進化するGenerative AI(GenAI)領域での責任追及を促進する前例のない取り組みとして、Vectaraはオープンソースの幻覚...

機械学習

『ご要望に合わせたチャット:ソフトウェア要件に応用した生成AI(LLM)の旅』

「大規模言語モデル(LLM)をソフトウェア要件に適用し、ビジネスロジックの知識ハブと開発を加速するためのコパイロットを作...