「AWS Step Functionsで機械学習パイプラインをオーケストレーションする」

美容とファッションのエキスパートが教える、魅力的なビューティーとファッションのトピック

インフラストラクチャとしてのコードでの高度なデータエンジニアリングとML Ops

写真:Markus Winkler on Unsplashさんの作品

この記事では、AWS Step Functionsを使用して機械学習パイプラインを作成し、インフラストラクチャとしてのコードを使用してデプロイする方法を説明します。この記事は、データおよびML OpsエンジニアがCloudFormationテンプレートを使用してMLパイプラインをデプロイおよび更新するために利用することを目的としています。これらのテンプレートおよびGihubリポジトリのリンクは、この記事で提供されます。

AWS Step Functionsを使用して、他のベンダーのマネージドサービスを含む、任意のサービスをトリガーすることができます。これは、データサービスがデータをどのように処理し変換するかのフローをオーケストレートすることができる強力なツールです。この記事では、AWS GlueとAWS Personalizeを例に挙げながら、以下のようなフローを持つ機械学習(ML)パイプラインを作成します:

パイプライングラフ。作者による画像。

データエンジニアとして、データレイク内のデータを準備し、機械学習モデルのトレーニングをトリガーするデータパイプラインの設計を担当しました。

そのため、他のツール(Airflowなど)の中からAWS Step Functionsを使用してみることにしました。AWSにとってネイティブなサービスであることを考慮しました。毎日または必要に応じてAWS Step Functionsを使用してMLモデルをトレーニングするアイデアだったのです。これによって、必要なモデルの更新に対して柔軟なセットアップが得られます。データプラットフォームにおけるインフラストラクチャとしてのコードの利点は明白であり、以前にそれについて書いたことがあります:

データプラットフォームの継続的な統合とデプロイメント

データエンジニアおよびML Ops向けCI/CD

towardsdatascience.com

テスト目的でAWS Personalizeを使用することにしました。このサービスは、アプリケーションのユーザーにより良い製品推奨を提供するために使用できます。機械学習について心配する必要がないため、AWS Personalizeが適切な選択肢だと思われます…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「予算の制約を持つ学生や起業家のための7つの最高の無料AIツール」

「無料で利用できる最高の7つのAIツールを一つ一つ選びました何もありません何もない」

AIニュース

ジャーナリズムでのAIの受容 - ニュースカルーセル

最近のジャーナリズムAIの調査によると、LSEのポリスシンクタンクのプロジェクトによると、調査対象の世界のニュース機関の75...

機械学習

「FastEmbedをご紹介:高速かつ軽量なテキスト埋め込み生成のためのPythonライブラリ」

言葉やフレーズは、埋め込みを使用して高次元空間で効果的に表現することができます。これは、自然言語処理(NLP)の分野で重...

AIニュース

メタが「AudioCraft」を発表:テキストを音声や音楽に変換するためのAIツール

Metaは、Facebook、Instagram、WhatsAppなどのソーシャルメディアプラットフォームを展開しているテックジャイアントであり、...

データサイエンス

DLノート:勾配降下法

人工ニューラルネットワーク(ANN)は、万能関数近似器です十分なデータが与えられ、適切なアーキテクチャがあり、十分な訓練...

AI研究

「INDIAaiとMetaが連携:AIイノベーションと共同作業の道を開く」

有望な展開として、INDIAaiとMetaが人工知能(AI)と新興技術の領域で強力な協力関係を築いています。両組織は覚書(MoU)に...