MITの新しいAI研究は、深層ニューラルネットワークが私たちとは異なる方法で世界を見ていることを示しています
MITの最新のAI研究が明かす、深層ニューラルネットワークが私たちとは異なる視点で世界を捉えている
人間の感覚システムの複雑な機能を模倣することを目指して、神経科学と人工知能の研究者は、計算モデルと人間の知覚の間の不変性の不均衡という持続的な課題に直面しています。最近の研究で強調されているように、人間の視覚および聴覚システムのさまざまな機能を模倣するために設計された人工ニューラルネットワークは、しばしば人間の知覚と一致しない不変性を示します。この矛盾は、これらのモデルの開発を導く基本原則とその実世界での適用可能性についての疑問を呼び起こします。
計算モデルと人間の知覚の間の不変性の不一致に対処するための歴史的な試みは、敵対的摂動に対するモデルの脆弱性やノイズや平行移動のモデルの判断に対する影響など、さまざまな領域の調査に関与してきました。
モデルメタマー:モデルメタマーの概念は、人間の知覚メタマーから着想を得ています。これらは、物理的には異なるが、特定の感覚系の段階では識別できない応答を生み出す刺激です。計算モデルの文脈では、モデルメタマーは特定の自然画像や音に対して、モデル内でほぼ同じ活性化を示す合成的な刺激です。重要な問題は、人間がこれらのモデルメタマーを生物学的な信号と同じクラスに属するものとして認識できるかどうかです。
- 「MatFormerをご紹介します:プラットフォーム間で柔軟なモデル展開を可能にする、汎用なネストされたTransformerアーキテクチャ」
- In Japanese, the title would be written as 「プロのようにChatGPT 4Visionを活用する7つの方法」(Puro no you ni ChatGPT 4Vision o katsuyou suru nanatsu no houhou).
- ジェネラティブ人工知能を解明:拡散モデルと視覚コンピューティングの進化についての詳細な解説
この研究の結果は、計算モデルと人間の知覚の不変性の間の重要な相違点を明らかにしています。研究チームは、視覚と聴覚のさまざまな深層ニューラルネットワークモデルからモデルメタマーを生成しました。これには、教師付きおよび教師なし学習モデルが含まれます。驚くべき発見として、これらのモデルの後の段階で生成されたモデルメタマーは、一貫して人間の観察者には識別できないものでした。これは、これらのモデルで多くの不変性が人間の感覚系と共有されていないことを示唆しています。
これらのモデルメタマーがモデルと人間の間の差異を明らかにする効果は、それらの予測可能性によってさらに示されています。興味深いことに、モデルメタマーの人間の識別可能性は、他のモデルによる認識と強く相関しており、人間とモデルの間のギャップは、各モデル固有の不変性にあることを示しています。
結論として、モデルメタマーの導入は、感覚システムの計算モデルと人間の知覚の間の相違点を理解し、解決するための重要な一歩です。これらの合成的な刺激は、研究者がより生物学的に忠実なモデルを作成する上での課題に新たな視点を提供します。まだ多くの作業が必要ですが、モデルメタマーの概念は、将来のモデル評価の有望な基準と、人間の感覚知覚の複雑さとより一致する改良された人工システムの可能性を示しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- SalesForce AIはCodeChainを導入:代表的なサブモジュールによる自己改訂の連鎖を通じたモジュラーコード生成のための革新的な人工知能フレームワーク
- QLoRA:16GBのGPUで大規模な言語モデルの訓練を行う
- 大規模なMLライフサイクルの統治、パート1:Amazon SageMakerを使用してMLワークロードを設計するためのフレームワーク
- 「自己改善のための生成AIと強化学習の統合」
- ニューラルネットワークの簡単な歴史
- 『ScaleCrafterを知る:事前学習済みの拡散モデルによる超高解像度画像合成の解放』
- 大規模言語モデルにおける推論力の向上:正確かつ転送可能なルールベース学習のための仮説から理論へ(HtT)フレームワークをご覧ください