このAI論文は、MITが化学研究のために深層学習モデルのスケーリングを探究しています

『MITが化学研究における深層学習モデルのスケーリングを探求したこのAI論文』

MITの研究者は、化学のための生成的事前トレーニングモデル(ChemGPT)とグラフニューラルネットワークフォースフィールド(GNNs)の両方に焦点を当てて、大規模な化学言語モデルのスケーリング挙動を調査しました。彼らは、モデルのパフォーマンスが経験的なスケーリング則によって特徴付けられるニューラルスケーリングの概念を紹介しました。特に、モデルのパラメータの数、データセットのサイズ、または計算リソースに関連する損失のスケーリングについてのべています。この研究では、大規模な化学モデルのスケーリングに関連する課題と機会について探究し、事前トレーニング損失の改善のためのリソースの最適な割り当てについての洞察を提供することを目指しています。

化学言語モデリングにおいて、研究者はSELFIES(分子の自己参照埋め込み文字列)表現のためのトークナイザーを使用した、GPT-Neoに基づいたGPT-3スタイルのモデルであるChemGPTを設計しています。このモデルはPubChemの分子で事前トレーニングされ、研究ではデータセットとモデルのサイズが事前トレーニングの損失に与える影響を調査しています。

言語モデルに加えて、この論文では、分子の幾何学と3次元構造を必要とするタスクのためのグラフニューラルネットワークフォースフィールド(GNNs)についても言及しています。E(3)不変量のみを操作する内部レイヤーを持つモデルから、E(3)が同変量を使用し、物理学に基づいたモデルアーキテクチャを持つモデルまで、4つのタイプのGNNが考慮されています。筆者らは、ニューラルスケーリングの実験中に、これらのGNNの深さと幅という観点での能力を評価しています。

深層化学モデルのハイパーパラメータ最適化(HPO)を効率的に扱うために、この論文では「Training Performance Estimation(TPE)」という技術を紹介しています。これは、コンピュータビジョンアーキテクチャで使用されている手法を適応させたものです。TPEは、トレーニング速度を利用して、異なるドメインやモデル/データセットのサイズでパフォーマンスを推定することを可能にします。この論文では、実験設定、NVIDIA Volta V100 GPU、PyTorch、およびモデルの実装とトレーニングのための分散データパラレルアクセラレーションの使用について詳細に説明されています。

全体として、この研究は大規模な化学言語モデルのコンテキストでのニューラルスケーリングの包括的な探索を提供し、生成的事前トレーニングトランスフォーマーとグラフニューラルネットワークフォースフィールドの両方を考慮に入れ、ハイパーパラメータ最適化の効率的な方法を紹介しています。実験結果と洞察は、科学的なディープラーニングアプリケーションにおける異なるモデルアーキテクチャのリソース効率を理解するために貢献しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「密度プロンプトのチェーンを通じたGPT-4要約の強化」

大規模言語モデル(LLMs)は、その優れた能力のために最近注目を集めています。LLMsは、質問応答やコンテンツ生成から言語翻...

機械学習

NLPとAIを利用したPythonにおけるテンプレートベースの文書生成の力

Pythonを利用したテンプレートベースの文書生成の機能をNLPやAIの機能と融合させ、その力を活用してください文書生成の作業フ...

AI研究

ワシントン大学とAI2の研究者が、VQAを介してAIが生成した画像の忠実度を測定する自動評価指標であるTIFAを紹介します

テキストから画像を生成するモデルは、人工知能の進歩の最も良い例の一つです。研究者たちの持続的な進歩と努力により、これ...

機械学習

「Amazon SageMakerスマートシフティングを使用して、ディープラーニングモデルのトレーニングを最大35%高速化」

今日の急速に進化する人工知能の風景において、ディープラーニングモデルは革新の最前線に位置しており、コンピュータビジョ...

機械学習

Microsoft BingはNVIDIA Tritonを使用して広告配信を高速化

Jiusheng Chen氏のチームは加速しました。 彼らは、NVIDIA Triton Inference ServerをNVIDIA A100 Tensor Core GPUで実行する...

人工知能

生成AI倫理' (Seisei AI Rinri)

生成型人工知能(AI)に関する大騒ぎがある中で、この変革的な技術を責任を持って実装する方法について、未解決の問題が増え...