MITの研究者らが、言語モデルの解読において、新たなトレーニングフリーかつゲーム理論に基づくAI手法を紹介
MITの研究者が新たなトレーニングフリーかつゲーム理論に基づくAI手法で言語モデルの解読を紹介
一部の課題は、現在の言語モデル(LM)によって比較的成功裡に処理されています。これには、質問に答える、事実確認、さらには無条件のテキスト生成など、事実の主張の作成または検証が必要なタスクが含まれます。しかし、増加するサイズに伴い、LMは誤ったが頻繁に繰り返されるコメントを生成しやすくなるという証拠が増えています。彼らは完全に信頼できるとは言えません。さらに、LMには事実生成タスクを解決するためのいくつかの機能があるため、問題が複雑化します。
彼らは一部確定的な生成タスクの解決のために生成的に(最も可能性の高い答えを尋ねることによって)も識別的に((質問-回答ペアを提示し、回答が受け入れ可能かどうか尋ねることによって)使用できますが、これらの2つの方法は時に異なる結果をもたらします。確率質量が複数の矛盾する回答に広がる場合、生成的な方法は失敗する可能性があります。一方、質問に微妙な依存関係があるか、較正不良のために識別的な方法は失敗する可能性があります。これらの混沌でしばしば相反するシグナルから、LMの真実に関する最良の推定値をどのように抽出すべきでしょうか?MITの研究者たちは、シグナルゲームであるCONSENSUS GAMEを使用して、生成的および識別的なLMのデコーディングプロセスをつなぐ方法を提供しています。
ディスクリミネーターエージェントは、高レベルで抽象的な正しいまたは間違った値をジェネレーターエージェントに伝える必要がありますが、それを実現するには限られた数の自然言語文字列を利用するしかないようです。ジェネレーターとディスクリミネーターが文字列の正確さの割り当てで合意するという組み合わせのポリシーは、このゲームにとって成功したアプローチとなる可能性があります。彼らは、みんなが正しいと合意する候補者を見つけるために、そのようなアプローチを検討することができます。難しい(文字値の)アクション空間を持つ多段階ゲームを解く必要があります。No-regret学習アルゴリズムは、最近ではポーカーやストラテゴ、外交などのゲームで勝利戦略を計算するための定番の手法となっています。
- アムステルダム大学とクアルコムAIの研究者がVeRAを発表:LoRAと比べて訓練可能なパラメーターの数を10倍削減する革新的なファインチューニングAI手法
- UCSDとMicrosoftの研究者がColDecoを導入:計算されたカラムのためのノーコード検査ツール
- 中国の新しいAI研究は、ハードウェアラスタライゼーションをサポートし、前例のないレンダリング速度を実現する4Dポイントクラウド表現である4K4Dを提案しています
ここで、彼らは自由形式の言語の作成に関わるタスクでも使用できることを示しています。このゲーム理論的なLMデコーディングの手法は、EQUILIBRIUM-RANKINGとして知られています。それは、質問応答のパフォーマンスに関して6つのベンチマーク(MMLU、ARC、RACE、HHH、TruthfulQA、GSM8K)で使用され、現在使用されている生成的、識別的、混合のデコーディング手法を大幅に上回る結果が得られました。広い意味では、彼らの結果は、ゲーム理論的なツールセットがLMの一貫性を形式化し向上させるためにどのように使用できるかを示しています。事実タスクの正確性も一貫性の増加によって改善されます。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- ドイツの研究チームがDeepMBを開発しました MSOTを介して高品質でリアルタイムなオプトアコースティックイメージングを提供するディープラーニングフレームワーク
- 材料研究を革新するための機械学習の活用
- CMUの研究者がMultiModal Graph Learning(MMGL)を導入「複数の多様な隣接情報から関係構造を持つ情報を抽出するための新たなAIフレームワーク」としています
- KAISTの研究者らが「SyncDiffusion」を提案:知覚的な類似度の損失関数から勾配降下法を使って複数の拡散を同期させるためのプラグアンドプレイモジュールです
- 「ユーレカ!NVIDIAの研究によるロボット学習の新たな進展」
- 研究者たちは、AIシステムを取り巻くガードレールはあまり堅牢ではないと述べています
- UCバークレーの研究者たちは、「リングアテンション:トランスフォーマーのメモリ要件を削減するためのメモリ効率の良い人工知能アプローチ」という提案を行っています