MITによる新しい機械学習の研究は、大規模言語モデル(LLM)が空間と時間の概念を理解し表現する方法を示しています

「MITによる新しい機械学習の研究:大規模言語モデル(LLM)が空間と時間の概念を理解し表現する方法の発見」

大規模言語モデル(LLMs)は最近、驚くべきスキルを発揮しています。GPTのトランスフォーマーアーキテクチャに基づいて構築された有名なChatGPTは、その人間の模倣能力により、大きな人気を得ています。質問応答やテキスト要約、コンテンツ生成、言語翻訳など、さまざまな用途があります。その人気にもかかわらず、これらのモデルが訓練中に実際に学んできたものが疑問視されています。

ある理論によれば、LLMsはデータのパターンと相関を見つけるのに優れていますが、データを生成する基本的なメカニズムを理解する面では不十分です。原理的には非常に優れた統計エンジンに似ており、実際には理解を持っているわけではないかもしれません。別の理論では、LLMsは相関を学び、トレーニングデータの生成プロセスに基づくより簡潔で理解しやすいモデルを成長させると述べています。

最近、マサチューセッツ工科大学の2人の研究者が、大規模言語モデルがどのように学習するのかをよりよく理解するために、研究を行いました。この研究では、異なる空間的時間スケールをカバーし、場所、イベント、関連する空間または時間座標の名前を含む6つのデータセットを作成し、LLMs Llama-2モデルの内部活性化に対して線形回帰プローブを使用して、LLMsが空間と時間の表現を作成しているかどうかを調べました。これらのプローブは、各データセット名に対応する現実世界の正確な位置または時間を予測します。

研究結果は、LLMsが異なるスケールで空間と時間の線形表現を学ぶことを示しています。これは、モデルが空間的および時間的側面について構造化された方法で関係性とパターンを理解していることを意味します。単にデータアイテムを記憶するのではなく、LLMsの表現は指示やプロンプトの変更に対しても強健です。情報の提供方法が異なっても、モデルは一貫して空間的および時間的情報の理解と表現を示します。

この研究によれば、表現は特定のエンティティのクラスに制限されていません。都市、ランドマーク、歴史上の人物、芸術作品、ニュース見出しなどは、空間と時間の観点でLLMsによって均一に表現されています。これにより、モデルがこれらの次元の包括的な理解を生み出していることが推測されます。研究者はさらに、「空間ニューロン」と「時間ニューロン」と呼ばれる特定のLLMニューロンを認識しています。これらのニューロンは、空間的および時間的座標を正確に表現し、空間と時間を処理し表現するモデル内の専門的なコンポーネントの存在を示しています。

結論として、この研究の結果は、現代のLLMsが統計量の単なる暗記を超えて、空間や時間などの重要な次元に関する構造化された重要な情報を学習しているという考えを強化しています。LLMsは単なる統計エンジンを超えており、訓練されたデータ生成プロセスの基礎構造を表現することができると言えます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

Google DeepMindとYouTubeの研究者は、Lyriaという高度なAI音楽生成モデルを発表しました

最近の発表では、GoogleのDeepMindがYouTubeとの協力のもと、芸術的表現の風景を変えるであろう音楽生成モデルLyriaを発表し...

機械学習

「生成型AIとMLOps:効率的で効果的なAI開発のための強力な組み合わせ」

人工知能はほとんどの可能な領域で注目すべき進歩を遂げています。それは創造性に羽根を与え、分析や意思決定能力を向上させ...

機械学習

「言語モデルの微調整を革命化する:NEFTuneのノイズ付き埋め込みで達成する前例のない向上」

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/10/Screen...

AI研究

「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」

ヒューマンアクティビティ認識(HAR)は、さまざまなセンサから収集したデータに基づいて、自動的に人間の活動を識別および分...

データサイエンス

AIの進歩を促進するための医療データのラベリングをゲーム化する

MITの卒業生が運営するプラットフォームは、AI企業のために医療データに対してクラウドの知恵を活用してラベルを付けます