「MITのリキッドニューラルネットワークが、ロボットから自動運転車までのAI問題を解決する方法」

MITのリキッドニューラルネットワーク ロボットから自動運転車までのAI問題を解決する方法

リキッドニューラルネットワークの効率は、動的に調整可能な微分方程式の使用にあります。これにより、訓練後に新しい状況に適応することができます。これは一般的なニューラルネットワークには存在しない機能です。¶ クレジット:Midjourney/VentureBeat

現在の人工知能(AI)の状況では、大規模な言語モデル(LLM)に関する話題が、ますます大きなニューラルネットワークの作成競争につながっています。ただし、すべてのアプリケーションが非常に大きなディープラーニングモデルの計算およびメモリ要件をサポートすることはできません。

これらの環境の制約は、いくつかの興味深い研究方向につながっています。リキッドニューラルネットワークは、MIT(CSAIL)のComputer Science and Artificial Intelligence Laboratoryの研究者によって開発された新しいタイプのディープラーニングアーキテクチャであり、特定のAIの問題に対するコンパクトで適応性のある効率的な解決策を提供します。これらのネットワークは、従来のディープラーニングモデルの固有の課題に対処するために設計されています。

リキッドニューラルネットワークは、従来のディープラーニングモデルが苦労するロボティクスや自動運転車などの領域で、AIの新しいイノベーションを促すことができます。

VentureBeatから全文を読む

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「地震をAIで把握する:研究者が深層学習モデルを公開、予測の精度を向上」

研究チームは地震モデルの現状を変革しようとしています。 カリフォルニア大学バークレー校、カリフォルニア大学サンタクルー...

データサイエンス

スコルテックとAIRIの研究者は、ニューラルネットワークを使用してドメイン間の最適なデータ転送のための新しいアルゴリズムを開発しました

大規模OT(Optimum Transport)とWasserstein GAN(Generative Adversarial Networks)の出現以降、機械学習ではニューラルネ...

AI研究

ボストン大学の研究者たちは、プラチプスファミリーと称されるファインチューニングされたLLMsを公開しました:ベースLLMsの安価で高速かつパワフルな改良を実現するために

大規模言語モデル(LLM)は世界中で大きな注目を浴びています。これらの非常に効果的で効率的なモデルは、人工知能の最新の驚...

AIニュース

「メタは、AIチャットボットを個性付けて使用できると報告されています」

「エイブラハム・リンカーンとチャットしたいですか?FacebookのオーナーであるMetaは人工知能のリーダーですが、すでに高度...

人工知能

NVIDIAは、NTT DOCOMOと協力して世界初のGPU加速5Gネットワークを立ち上げます

世界中の企業の取締役会を席巻する生成AIの中で、グローバルな通信会社はどのようにコスト効率のよい方法でこれらの新たなAI...

AIニュース

「デジタルツインは水素の緑の成長への道を提供する」

研究者は、デジタルツインが水素電解装置の状態を監視することで、クリーンな水素の製造コストを低減するのに役立つと考えて...