「MITのリキッドニューラルネットワークが、ロボットから自動運転車までのAI問題を解決する方法」

MITのリキッドニューラルネットワーク ロボットから自動運転車までのAI問題を解決する方法

リキッドニューラルネットワークの効率は、動的に調整可能な微分方程式の使用にあります。これにより、訓練後に新しい状況に適応することができます。これは一般的なニューラルネットワークには存在しない機能です。¶ クレジット:Midjourney/VentureBeat

現在の人工知能(AI)の状況では、大規模な言語モデル(LLM)に関する話題が、ますます大きなニューラルネットワークの作成競争につながっています。ただし、すべてのアプリケーションが非常に大きなディープラーニングモデルの計算およびメモリ要件をサポートすることはできません。

これらの環境の制約は、いくつかの興味深い研究方向につながっています。リキッドニューラルネットワークは、MIT(CSAIL)のComputer Science and Artificial Intelligence Laboratoryの研究者によって開発された新しいタイプのディープラーニングアーキテクチャであり、特定のAIの問題に対するコンパクトで適応性のある効率的な解決策を提供します。これらのネットワークは、従来のディープラーニングモデルの固有の課題に対処するために設計されています。

リキッドニューラルネットワークは、従来のディープラーニングモデルが苦労するロボティクスや自動運転車などの領域で、AIの新しいイノベーションを促すことができます。

VentureBeatから全文を読む

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「NTUシンガポールの研究者たちは、テキストから3D生成のための新しいプラグアンドプレイなリファインメントAIメソッドであるIT3Dを提案しています」

テキストから画像への領域で注目すべき進歩があり、研究コミュニティ内で3D生成への拡大に対する熱意の急増が起きています。...

機械学習

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取るこ...

機械学習

「POCOと出会う:3D人体姿勢と形状推定のための画期的な人工知能フレームワーク」

写真や動画から3D人体のポーズと形状(HPS)を推定することは、現実世界の設定で人間のアクションを再構築するために必要です...

コンピュータサイエンス

アルファベットは、遠隔地域でのインターネット提供のためにレーザーに賭けています

ターラプロジェクトは、レーザーを使用してインターネットアクセスを遠隔地や農村地域にもたらすことを目的としています

AIニュース

メタからのLlama 2基盤モデルは、Amazon SageMaker JumpStartで利用可能になりました

「本日、Metaによって開発されたLlama 2 ファウンデーションモデルがAmazon SageMaker JumpStartを通じてお客様に提供できる...

AIニュース

ヴィンセント・ファン・ゴッホの復活

パリのオルセー美術館では、ヴィンセント・ファン・ゴッホのレプリカが訪問者とおしゃべりし、彼の生涯や死についての洞察を...