MITとマイクロソフトの研究者が、DoLaという新しいAIデコーディング戦略を紹介しましたこれは、LLMsにおける幻覚を減らすことを目的としています

MITとマイクロソフトの研究者がDoLaという新しいAIデコーディング戦略を紹介しましたこれは、LLMsにおける幻覚を減らすことを目的としています

大規模言語モデル(LLM)の利用により、多くの自然言語処理(NLP)アプリケーションが大きな恩恵を受けてきました。LLMは性能が向上し、スケールアップにより追加の機能を獲得しましたが、事前トレーニング中に検出された実世界の事実と一致しない情報を「幻覚」する問題を抱えています。これは高リスクなアプリケーション(臨床や法的な設定など)において、信頼性のあるテキストの生成が不可欠な場合には、採用の障害となります。

データとモデルの分布の間の前方KLダイバージェンスを最小化しようとする最尤言語モデリングのターゲットが、LLMの幻覚の原因かもしれません。しかし、これは確証されているわけではありません。この目標を追求する場合、LMは、トレーニングデータにエンコードされた知識と完全に一致しないフレーズに非ゼロの確率を割り当てる場合があります。

モデルの解釈可能性の観点からは、トランスフォーマーの初期レイヤーは「低レベル」の情報(品詞タグなど)をエンコードすることが示されています。対照的に、後のレイヤーはより「意味的な」情報をエンコードします。

MITとMicrosoftの研究者グループは、このモジュラーな知識のエンコードを利用して、より深いレベルからの情報を優先し、中間または浅いレベルの情報を軽視することで、LMの事実の知識を増やすための対照的なデコーディング戦略を提案しています。

彼らの最近の研究は、Decoding by Contrasting Layers(DoLa)という新しいデコーディング手法を紹介しています。提案された手法は、外部の知識を取得したり、さらなる微調整を行ったりせずに、LLMにエンコードされた事実知識の露出を改善することに基づいています。

DoLaは、TruthfulQAおよびFACTORの両方でLLaMAファミリーモデルの整合性を改善する実験的な証拠が示されています。StrategyQAとGSM8K ccの両方で、連鎖思考の推論に関する追加の実験は、事実の推論を改善する可能性を示しています。最後に、GPT-4で評価されたオープンエンドのテキスト生成の実験結果は、DoLaが情報を提供し、元のデコーディング手法と比較して優れた評価を導くより事実に基づく応答を生成することができることを示しています。DoLaは、LLMの信頼性を高めるためのデコーディング手法であり、研究結果はデコーディングプロセスにわずかな時間しか追加しないことを示しています。

研究者たちは、他のドメイン(指示の従順性や人間のフィードバックへの反応など)でのモデルのパフォーマンスを調査していません。また、人間のラベルや事実情報源を利用して微調整するのではなく、チームは既存のアーキテクチャとパラメータに依存しており、可能な改善の範囲を制限しています。特定の回収強化LMとは異なり、この手法は完全にモデルの既存の知識に依存しており、外部の回収モジュールを介して新しい情報を追加することはありません。チームは、将来の研究が上記のコンポーネントをデコーディング技術に組み込んで制限を克服するのに役立つことを望んでいます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

ミストラルAIは、MoE 8x7Bリリースによる言語モデルの画期的な進歩を発表します

パリに拠点を置くスタートアップMistral AIは、MoE 8x7Bという言語モデルを発表しました。Mistral LLMは、各々が70億のパラメ...

機械学習

「LMQLに出会ってください:大規模言語モデル(LLM)との対話のためのオープンソースプログラミング言語とプラットフォーム」

大規模言語モデルは、人工知能コミュニティに大きな影響を与えています。最近のその影響は、医療、金融、教育、エンターテイ...

機械学習

NVIDIA NeMoを使ったスタートアップが生成AIの成功ストーリーをスタートさせました

機械学習は、ワシーム・アルシークが大学の教科書を読み進めるのを助けました。現在、彼は生成型AIを活用し、数百の企業向け...

機械学習

「FlexGenに会おう:GPUメモリが限られている場合に大規模な言語モデル(LLM)を実行するための高スループットな生成エンジン」

大規模言語モデル(LLM)は最近、さまざまなタスクで印象的なパフォーマンスを発揮しています。生成型LLMの推論は以前にない...

AI研究

シンガポール国立大学の研究者たちは、ピクセルベースと潜在ベースのVDMを結びつけたハイブリッド人工知能モデルであるShow-1を提案しますこれはテキストからビデオを生成するものです

シンガポール国立大学の研究者たちは、Show-1というハイブリッドモデルを導入しました。テキストからビデオを生成するための...

機械学習

AI倫理の役割:革新と社会的責任のバランス

「人工知能は急速に拡大している分野を表しており、AIが引き起こす倫理的なジレンマを認識することが重要です」