「マイクロソフト、Azureカスタムチップを発表:クラウドコンピューティングとAI能力を革新する」

「マイクロソフト、Azureカスタムチップを発表:クラウドコンピューティングとAI能力を革新する」

産業の持続的な噂の中で、Microsoftの長らく待ち望まれていた発表がイグナイトカンファレンスで明らかになり、テックランドスケープにおける重要な瞬間を迎えました。このテックジャイアントは、ハードウェアとソフトウェア領域全般におけるイノベーションと自己完結性へのコミットメントを体現する、独自に設計されたチップを正式に発表しました。

この発表の中核をなすのは、Microsoft Azure Maia 100 AIアクセラレータとMicrosoft Azure Cobalt CPUの2つの画期的なチップです。Maia 100はMaiaアクセラレータシリーズの一部で、5nmプロセスと1,050億個のトランジスタを備えています。このパワーハウスは、複雑なAIタスクと生成的なAI操作を実行するために特別に設計され、Azureの最も重いAIワークロード、大規模なOpenAIモデルの実行を支えることが使命です。

Maia 100には、128コアのArmベースアーキテクチャを備えたAzure Cobalt 100 CPUが補完されています。この64ビット構造が特筆すべきであり、このプロセッサは、40%少ない電力でARMベースの競合製品よりも一般的なコンピューティング操作を提供するよう設計されています。

自己完結性の包括的なビジョンを強調しつつ、Microsoftはこれらのチップを、チップやソフトウェアからサーバー、ラック、冷却システムまでのすべての側面を管理する野心の最後のピースとして位置付けました。来年初めにMicrosoftのデータセンターに導入される予定のこれらのチップは、最初にCopilot AIとAzure OpenAIサービスを駆動し、クラウドとAIの機能の限界を em 続きを読む。

マイクロソフトの戦略は、チップ設計を超えた包括的なハードウェアエコシステムまで及んでいます。これらのカスタムチップは、マイクロソフトとそのパートナーが共同開発したソフトウェアを利用して、特別に設計されたサーバーマザーボードとラックに統合されます。目標は、パワーエフィシエンシー、性能、コスト効率を最適化する高度に適応可能なAzureハードウェアシステムを作ることです。

このチップの発表と同時に、MicrosoftはAzure Boostを導入しました。これは、ストレージとネットワーキング機能をホストサーバーから専用のハードウェアにオフロードすることで、操作を迅速化するためのシステムです。この戦略的な動きは、Azureのインフラ内での速度と効率を強化することを目的としています。

カスタムチップに加えて、MicrosoftはAzureの顧客にインフラストラクチャオプションを多様化するためのパートナーシップを築きました。さらに、テックジャイアントは、VoAGIサイズのAIトレーニングと生成的なAI推論タスクに対応するNvidia H100 Tensor Core GPU向けに設計されたNC H100 v5 VMシリーズを導入する計画など、将来の計画を示しました。また、ロードマップには、遅延を犠牲にすることなく大規模なモデル推論操作をするためのNvidia H200 Tensor Core GPUの導入も含まれています。

卓越した共同作業に忠実であるとの考えから、MicrosoftはNvidiaとAMDとの継続的なパートナーシップを確認し、来年にNvidiaの最新のHopper GPUチップとAMD GPU MI300をAzureの兵器庫に統合する計画を発表しました。

マイクロソフトがカスタムチップの世界に進出して間もないように思えるかもしれませんが、これは、GoogleやAmazonなどのクラウドジャイアントが以前にTensor Processing Unit(TPU)やGraviton、Trainium、Inferentiaなど独自のチップを発表しているのに加わっています。

この画期的なチップの導入を楽しみに待つ中、マイクロソフトのイノベーションへの取り組みは揺るぎなく、クラウドコンピューティングと人工知能の領域を性能と効率の未知の領域に推進しています。これらのカスタムチップの公開は、技術の範囲を再定義し、クラウドコンピューティングと人工知能の絶えず進化するランドスケープにおいて、業界のリーダーとしての地位を確固たるものにするという会社の断固たる貢献の証です。

この記事の元記事は、Microsoft Unveils Azure Custom Chips: Revolutionizing Cloud Computing and AI Capabilitiesが最初に表示された場所です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「GPT-5がOpenAIによって商標登録されました:それがChatGPTの未来について何を示しているのでしょうか?」

「GPT-5とは何ですか?また、OpenAIがなぜそれに商標を取得したのでしょうか?人工一般知能(AGI)に向けた次のステップとな...

機械学習

高度な言語モデルの世界における倫理とプライバシーの探求

はじめに 現代の急速に進化する技術的な景観において、大規模言語モデル(LLM)は、産業を再構築し、人間とコンピュータの相...

機械学習

このAI論文では、アマゾンの最新の機械学習に関する情報が大規模言語モデルのバグコードについて明らかにされています

プログラミングは複雑であり、エラーのないコードを書くことは時には難しいです。コードの大規模言語モデル(Code-LLMs)はコ...

AIニュース

「解説者に続いて、ウィンブルドンでAIがライン審判を置き換える可能性がある」

ウィンブルドンは、豊かな伝統と名声あるテニスの試合で知られており、ゲームを革命化する可能性のある大きな変化を検討して...

AI研究

マイクロソフトの研究者が「LoRAShear LLMの構造的な剪定と知識の回復に対する画期的な人工知能効率的アプローチ」を紹介

LLMは大量のテキストデータを処理し、関連情報を迅速に抽出することができます。これは、検索エンジン、質問応答システム、デ...

データサイエンス

「トランスフォーマーはNFLプレーを生成できます:QB-GPTの紹介」

初めて「ストラトフォーマー」についての記事を書いて以来、多くのフィードバックとアイデアをいただいている(まず、ありが...