マイクロソフトリサーチは、Florence-2という新しいビジョン基盤モデルを導入しましたこれは、さまざまなコンピュータビジョンやビジョン言語のタスクに対応する統一されたプロンプトベースの表現を持っています
『マイクロソフトリサーチが新たなビジョン基盤モデル「Florence-2」を導入』 - コンピュータビジョンとビジョン言語のタスクに対応する統一されたプロンプトベースの表現
人工一般知能(AGI)システムでは、タスクに関係なく利点を提供する事前トレーニング可能な適応的表現の使用に向けた noticeable な傾向が見られました。自然言語処理(NLP)は、この傾向の良い例です。洗練されたモデルは、明快な指示で複数のドメインとタスクをカバーする包括的な知識を持つ柔軟性を示します。NLPの人気は、コンピュータビジョンにおいて補完的な戦略を促しています。特徴やマスキングされた輪郭、オブジェクト配置など、コンピュータビジョンでは特徴的な視覚データの処理が必要です。コンピュータビジョンにおいて普遍的な表現を実現するためには、図1に示されるように、2次元に配置されたさまざまな厳しい課題を上手に処理する必要があります。
図1
空間の階層性:モデルは、細部のピクセル情報と画像レベルのアイデアを理解することで異なるサイズの空間情報を認識する必要があります。図に示したビジョンにおける複雑な空間の階層をサポートするためには、モデルはさまざまな粒度を管理できる能力を持たなければなりません。
- アリババの研究者らがQwen-Audioシリーズを発表 ユニバーサルな音声理解能力を備えた大規模な音声言語モデルのセット
- ペンシルバニア大学の研究者たちは、OpenAIのChatGPT-Visionに対して、一連のテストを実施することで、ビジョンベースのAI機能の有効性を評価するための機械学習フレームワークを開発しました
- UCバークレーとSJTU中国の研究者が、言語モデルのベンチマークと汚染を再考するための「再表現サンプル」の概念を紹介しました
意味的な粒度:コンピュータビジョンでは、普遍的な表現はさまざまな意味的な粒度をカバーする必要があります。抽象的なタイトルからより詳細な説明へのパラダイムの変化により、さまざまな使用方法に対する柔軟な理解が提供されます。
この追求は、特異性と重要な挑戦に特徴付けられます。主要な障害は、より多くのデータの必要性であり、空間の階層性と意味的な粒度の複雑なニュアンスを捉える基盤モデルの開発を妨げます。ImageNet、COCO、Flickr30k Entitiesなどの既存のデータセットは、特殊なアプリケーション向けに広範に人間によってラベル付けされています。この制約に対処するためには、より大規模なスケールで各画像の詳細な注釈を生成することが不可欠です。また、コンピュータビジョンで空間の階層性と意味的な粒度をシームレスに統合するモデルが存在しません。タスク固有のデザインにより、従来のモデルは、意味的セグメンテーション、オブジェクト識別、画像キャプションなどのタスクで優れたパフォーマンスを発揮します。ただし、異なるビジョンタスクに対してタスク非依存的な方法で適応できる完全で統一的なモデルを作成することは、重要です。
統一された事前トレーニングとネットワークデザインを通じて、このモデルは、コンピュータビジョンにおける空間、時間、多モーダルの特徴の統合を先駆的に行っています。最初の進化的イテレーションは、ノイズのあるテキスト-イメージのペアリングでの事前トレーニングとカスタマイズされたアダプタを使用したタスク固有の微調整を通じて転送学習に優れています。ただし、大規模なタスク固有のデータセットとアダプタへの依存は、上記の2つの主要な問題に取り組む際にギャップを生じさせる原因となります。この研究では、Azureの研究者が、豊富なビジュアル注釈を使用して獲得された普遍的なバックボーンを提供しています。これにより、不完全かつ包括的なデータと均一なアーキテクチャの不足を成功裏に解決できる、様々なビジョンタスクに対するプロンプトベースの統一された表現が実現されます。
多タスク学習には、大規模で高品質な注釈付きデータが必要です。時間のかかる人間の注釈に頼らずに、彼らのデータエンジンは、\fld という広範なビジュアルデータセットを作成します。このエンジンには2つの効果的な処理モジュールがあります。第1のモジュールでは、特化モデルを使用して写真に共同でおよび自律的に注釈を付けることにより、従来の単一および手動の注釈戦略から脱却します。集団の知恵理論に類似して、多くのモデルが協力して一致を作り出し、より公平で信頼性のある画像解釈を実現します。習得された基本モデルを使用して、第2のモジュールはこれらの自動注釈を反復的に洗練し、フィルタリングします。
彼らのモデルは、この大規模なデータセットを活用して、シーケンス対シーケンス(seq2seq)アーキテクチャを使用して、イメージエンコーダとマルチモダリティエンコーダ‐デコーダを統合しています。このアーキテクチャは、タスク固有のアーキテクチャの調整を必要とせずに、さまざまなビジョンタスクをサポートします。これは、NLPコミュニティの柔軟なモデル作成と統一された基盤の目標と一致しています。データセット内のすべての注釈は、一貫してテキストの出力に標準化されます。これにより、目標と同じ損失関数を使用して単一の多タスク学習戦略を一貫して最適化することが可能になります。その結果、統一されたパラメータを持つ単一のモデルの制御下で、オブジェクト認識、キャプション付け、およびグラウンディングを含むさまざまな機能を処理できる柔軟なビジョン基盤モデル、またはモデルが作成されます。大規模な言語モデル(LLM)が使用する方法と一致して、テキストをプロンプトとして活用することにより、タスクを活性化させます。
彼らの方法は、一般的な表現を達成し、多くの視覚的タスクで広範な利用が可能です。主な見つかりとしては以下のとおりです:
- モデルは柔軟なビジョン基礎モデルであり、RefCOCOでの参照表現の理解、Flick30kでの視覚的根拠、およびCOCOでのキャプション作成などのタスクにおいて、新しい最先端のゼロショット性能を提供します。
- モデルは小さなサイズにもかかわらず、公開された人間によるアノテーションデータを使用して微調整した後、より専門化されたモデルと競合します。特に、改良されたモデルはRefCOCOで新しいベンチマークの最先端スコアを設定しています。
- 事前に学習されたバックボーンは、下流のタスクであるCOCOオブジェクト検出、インスタンスセグメンテーション、およびADE20K意味セグメンテーションにおいて、教師付きおよび自己教師付きモデルを上回ります。彼らのモデルは、Mask-RCNN、DINO、およびUperNetフレームワークを使用しており、COCOおよびADE20Kデータセットに対してそれぞれ6.9、5.5、および5.9ポイントの大幅な向上をもたらし、またImageNetでの事前学習モデルのトレーニング効率を4倍にしています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 南開大学と字節跳動の研究者らが『ChatAnything』を導入:LLM強化された人物像生成に特化した革新的なAIフレームワーク
- NVIDIAのAI研究者は、オブジェクト周囲の狭いバンドにボリューメトリックレンダリングを制限することで、効率的にNeRFレンダリングを行うための人工知能アプローチを提案しています
- このAI研究では、BOFT(Foundationモデルの適応のための新しい一般ファインチューニングAIメソッド)を紹介します
- 「このAI研究は微生物学者が細菌を識別するのを助けます」
- 「スタンフォード大学の研究者が言語モデルの事実性において革新を成し遂げました:自動的な優先順位付けとNLPの進歩によるエラー削減」
- センスタイムリサーチは、長文から人間の動きと軌跡を生成するための新しい人工知能アプローチ「Story-to-Motion」を提案しています
- 「研究者たちは、Facebook広告にさらなる潜在的な差別を見つける」という記事です