マイクロソフトリサーチと清華大学の研究者たちは、「思考の骨格(SoT):LLMの生成を加速するための新しい人工知能の手法」という提案を行いました

マイクロソフトリサーチと清華大学の研究者たちによる「思考の骨格(SoT):LLM生成の新たな人工知能手法」という提案

大型言語モデル(LLM)であるGPT-4やLLaMAなどは、技術的な風景を確実に変えました。しかし、処理速度の遅さは、広範な応用性を制限する繰り返しの課題です。その驚くべき能力にもかかわらず、LLMからの応答を得るためにかかる時間は、特にチャットボットや共同運転者、産業制御装置などのレイテンシ重視のアプリケーションにおいて、その効果を制限しています。この根本的な問題に対処する解決策の必要性に気付いたMicrosoft Researchと清華大学の研究者は、Skeleton-of-Thought(SoT)という革新的な手法を提案しました。

従来、LLMの速度を高速化するための取り組みには、モデルやシステム、ハードウェアの複雑な変更が含まれていました。しかし、研究チームはSoTで異なるアプローチを取っています。従来の方法とは異なり、SoTはLLMへの広範な変更を避け、代わりにブラックボックスとして扱います。焦点は、モデルの内部機能の変更から、出力コンテンツの組織の最適化に移ります。提案された解決策では、LLMにユニークな二段階のプロセスを実行するよう指示します。最初の段階では、LLMに回答の骨組みを導き出すよう指示します。その後、2つ目の段階では、LLMに骨格内の複数のポイントの並列拡張を行うよう指示します。このアプローチにより、モデルのアーキテクチャに複雑な調整を必要とせずに、LLMの応答時間を向上させる新しい手段が導入されます。

SoTの方法論は、コンテンツ生成プロセスを2つの異なる段階に分解することを含んでいます。まず、LLMに回答の骨組みを構築するよう促します。この初期段階は、ヒューマンで問題解決にアプローチする方法と一致しており、高レベルの構造を概説することで進められます。2番目の段階では、この骨格を利用して並列拡張が実行され、LLMが複数のポイントに同時に対応することが可能となります。驚くべきことに、このアプローチはLLaMAなどのオープンソースモデルやGPT-4などのAPIベースのモデルにも適用可能性を示しています。

SoTの効果を評価するために、研究チームはオープンソースおよびAPIベースのカテゴリにわたる12つの最近リリースされたモデルについて、広範なテストを実施しました。チームは、コーディング、数学、文書作成、ロールプレイなどのさまざまなドメインの質問を含むVicuna-80データセットを使用して、かなりの速度向上が観察されました。SoTでは、8つの12モデルで1.13倍から2.39倍の速度向上が実現されました。重要なことは、これらの速度向上を達成するために回答品質を犠牲にすることはありませんでした。チームはFastChatとLLMZooのメトリックを使用して、SoTの回答の品質を評価し、異なる質問カテゴリ全体で回答の品質を維持または向上させる能力を示しました。

結論として、SoTは遅いLLMの持続的な課題に対する有望な解決策として浮かび上がっています。研究チームの革新的なアプローチは、LLMをブラックボックスとして扱い、データレベルの効率最適化に重点を置くことで、コンテンツ生成の加速に対して新しい視点を提供しています。SoTでは、LLMに回答の骨組みを構築させ、それから並列拡張を実行させることで、効果的な応答時間の向上手段を導入しています。評価結果は、かなりの速度向上だけでなく、回答の品質を維持または向上させる能力を示し、効率と効果の二重の課題に取り組んでいます。この研究は、人工知能のダイナミックな思考プロセスにおける将来の探求の可能性を開き、より効率的で多様な言語モデルへのシフトを促すものとなります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「タイムシリーズの拡張」

「拡張機能は、コンピュータビジョンパイプラインの領域において欠かせない要素となってきましたしかし、タイムシリーズなど...

データサイエンス

学ぶための勇気: L1&L2正則化の解明(パート3)

「‘MLの学びへの勇気:L1とL2正則化の解読’ 第3回目にお帰りなさい前回は、正則化の目的について掘り下げ、L1とL2の方法を解...

機械学習

2024年のインフラストラクチャー予測

企業はAIの導入の転換点を見ているランサムウェアの脅威が罰則と衝突し、ハイブリッドクラウドアーキテクチャが主流となり、...

機械学習

「シャッターストックがNVIDIAピカソとともに生成AIを3Dシーンの背景に導入」

こんな感じです:Shutterstockの最新のツールを使って、クリエイターはジェネレーティブAIの助けを借りて、迅速にカスタマイ...

機械学習

直感的にR2と調整済みR2のメトリックを探索する

R2は、回帰型の機械学習タスクの評価メトリックとして広く使用されていますそれは、目的の特徴量(従属特徴量)の分散のどれ...

AI研究

「LLMはナレッジグラフを取って代わるのか? メタリサーチャーが提案する『ヘッド・トゥ・テイル』:大規模言語モデルの事実知識を測るための新たな基準」

大規模言語モデルは、その超すばらしい能力によって多くの評価を集めています。彼らは人間を模倣し、人間のようにコンテンツ...