マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ

Microsoft releases TypeChat an AI library that allows easy construction of natural language interfaces using types.

MicrosoftのTypeChatライブラリは、大規模な言語モデル(LLM)に基づいたタイプベースの自然言語インターフェースの作成を容易にする試みです。TypeChatは、TypeScriptと生成AIを通じてAPI、アプリケーションスキーマ、自然言語のギャップを埋めることを目指すGitHubプロジェクトです。TypeChatは、アプリケーションの型定義を使用して型安全な構造化AI応答を取得します。Microsoftの技術フェローであり、C#とTypeScriptのリードデベロッパーであるAnders Hejlsbergは、7月20日にTypeChatを紹介しました。これは、複雑な決定木を用いてユーザーの意図を推測し、必要なデータを収集してアクションを起こすアプリに対して自然言語インターフェースを作成するという課題に取り組むためのものです。

TypeChatは、型を使用してNLUの作成プロセスを簡略化するライブラリです。最近まで、自然言語とのインターフェースを持つアプリを開発することは困難でした。これらのアプリは、ユーザーの意図を推測し、さらなる処理のために関連するデータを収集するために、詳細な決定木を頻繁に使用していました。大規模な言語モデル(LLM)のおかげで、ユーザーの自然言語の入力を受け取り、その意図に一致させることははるかに簡単になりました。これにより、モデルの応答の妥当性を保証し、モデルの出力に必要な安全性制約を課すという新たな困難が生じました。ただし、プロンプトエンジニアリングの学習曲線は厳しく、目標はこれらの問題を修正することであっても、その成長とともにプロンプトの脆弱性も増していきます。

TypeChatの開発者は、この製品がスキーマエンジニアリングによってプロンプトエンジニアリングを効果的に代替できる可能性があると主張しています。自然言語アプリで使用できる意図は、開発者によって型として定義できます。これは、感情をラベル付けするシステムからデジタル音楽ストアのカテゴリセットまで、非常に基本的なものから洗練されたものまでです。

TypeChatは、開発者が定義した型を使用してLLMのプロンプトを構築し、そのプロンプトがスキーマに従っているかどうかを確認します。検証に失敗した場合は、言語モデルを再び対話して出力を修正し、それに従うようにします。TypeChatはまた、状況を要約し、それがユーザーの期待に一致しているかを確認します。

TypeChatの開発者は、最近のLLMに関する「興奮のラッシュ」について、多くの質問が出されていると述べています。これらのモデルの最も明らかなユースケースはチャットボットでした。ただし、従来のUIを自然言語インターフェースで補完したり、ユーザーのリクエストをアプリが処理できる形式に変換するためにAIを使用したりするなど、これらのモデルを既存のアプリインターフェースに組み込む方法についての質問が提起されています。TypeChatの目的は、これらの問題に対処することです。

この取り組みにおいて、あなたの意見とアイデアは非常に貴重です。寄付のほとんどにはContributor License Agreement(CLA)にサインする必要があり、貢献者が貢献を利用する権限を持っていることを明示します。詳細については、https://cla.opensource.microsoft.com/をご覧ください。

CLAが必要な場合、CLAボットは自動的にプルリクエストのスタイリング(ステータス、備考など)を更新してこれを反映します。ロボットが指示する通りに行ってください。CLAを使用する場合は、すべてのリポジトリに対して一度だけ行う必要があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

ChatGPTのコードインタプリター:知っておくべきすべてのこと

OpenAIは、興奮をもって発表を行っており、最新の発表はChatGPT Plusのユーザーを喜ばせることでしょう。数ヶ月の期待を経て...

AI研究

サリー大学の研究者が新しい人工知能(AI)モデルを開発しましたこのモデルは、通信ネットワークが最大76%ものネットワークを節約できる可能性があります

オープン・ラジオ・アクセス・ネットワーク(O-RAN)は、分離されたラジオ・アクセス・ネットワーク(RAN)に知能を注入し、...

データサイエンス

合成データ生成のマスタリング:応用とベストプラクティス

この記事では、合成データ生成技術とそれらのさまざまなアプリケーションでの実装、および遵守すべきベストプラクティスにつ...

機械学習

「ディープラーニングベースのフレームワークを使用した高速かつ正確な音響ホログラム生成」

DGIST電気工学およびコンピュータサイエンス学科の黄宰潤教授率いるチームは、ホログラムに基づいたリアルタイムでの焦点超音...

機械学習

プロンプトエンジニアリングへの紹介

イントロダクション 自然言語処理は、基盤となる技術や手法を使用した実装の豊かな領域であります。近年、特に2022年の始まり...

AIニュース

「FacebookとInstagramにて、Metaが新しいAI機能を発表」

人工知能において注目すべき進展が詰まった2022年において、Metaは革新的な進歩を遂げ、確実にリードを取っています。仮想ア...