マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ

Microsoft releases TypeChat an AI library that allows easy construction of natural language interfaces using types.

MicrosoftのTypeChatライブラリは、大規模な言語モデル(LLM)に基づいたタイプベースの自然言語インターフェースの作成を容易にする試みです。TypeChatは、TypeScriptと生成AIを通じてAPI、アプリケーションスキーマ、自然言語のギャップを埋めることを目指すGitHubプロジェクトです。TypeChatは、アプリケーションの型定義を使用して型安全な構造化AI応答を取得します。Microsoftの技術フェローであり、C#とTypeScriptのリードデベロッパーであるAnders Hejlsbergは、7月20日にTypeChatを紹介しました。これは、複雑な決定木を用いてユーザーの意図を推測し、必要なデータを収集してアクションを起こすアプリに対して自然言語インターフェースを作成するという課題に取り組むためのものです。

TypeChatは、型を使用してNLUの作成プロセスを簡略化するライブラリです。最近まで、自然言語とのインターフェースを持つアプリを開発することは困難でした。これらのアプリは、ユーザーの意図を推測し、さらなる処理のために関連するデータを収集するために、詳細な決定木を頻繁に使用していました。大規模な言語モデル(LLM)のおかげで、ユーザーの自然言語の入力を受け取り、その意図に一致させることははるかに簡単になりました。これにより、モデルの応答の妥当性を保証し、モデルの出力に必要な安全性制約を課すという新たな困難が生じました。ただし、プロンプトエンジニアリングの学習曲線は厳しく、目標はこれらの問題を修正することであっても、その成長とともにプロンプトの脆弱性も増していきます。

TypeChatの開発者は、この製品がスキーマエンジニアリングによってプロンプトエンジニアリングを効果的に代替できる可能性があると主張しています。自然言語アプリで使用できる意図は、開発者によって型として定義できます。これは、感情をラベル付けするシステムからデジタル音楽ストアのカテゴリセットまで、非常に基本的なものから洗練されたものまでです。

TypeChatは、開発者が定義した型を使用してLLMのプロンプトを構築し、そのプロンプトがスキーマに従っているかどうかを確認します。検証に失敗した場合は、言語モデルを再び対話して出力を修正し、それに従うようにします。TypeChatはまた、状況を要約し、それがユーザーの期待に一致しているかを確認します。

TypeChatの開発者は、最近のLLMに関する「興奮のラッシュ」について、多くの質問が出されていると述べています。これらのモデルの最も明らかなユースケースはチャットボットでした。ただし、従来のUIを自然言語インターフェースで補完したり、ユーザーのリクエストをアプリが処理できる形式に変換するためにAIを使用したりするなど、これらのモデルを既存のアプリインターフェースに組み込む方法についての質問が提起されています。TypeChatの目的は、これらの問題に対処することです。

この取り組みにおいて、あなたの意見とアイデアは非常に貴重です。寄付のほとんどにはContributor License Agreement(CLA)にサインする必要があり、貢献者が貢献を利用する権限を持っていることを明示します。詳細については、https://cla.opensource.microsoft.com/をご覧ください。

CLAが必要な場合、CLAボットは自動的にプルリクエストのスタイリング(ステータス、備考など)を更新してこれを反映します。ロボットが指示する通りに行ってください。CLAを使用する場合は、すべてのリポジトリに対して一度だけ行う必要があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

人工知能

偉大さの開放:アレクサンダー大王の創造的AIとの旅 (Idai-sa no kaihō Arekusandā Taio no sōzō-teki AI to no tabi)

「生成型AI(GAI)はコーチングの効果を高めるためにどのように使用できるのか、また生成型AI(GAI)をコーチングツールとし...

機械学習

マルチモーダル言語モデル:人工知能(AI)の未来

大規模言語モデル(LLM)は、テキストの分析や生成などのタスクをこなすことができるコンピュータモデルです。これらは膨大な...

人工知能

生成型AIによる検索のスーパーチャージ

私たちは、ジェネレーティブAIを使用するSGE(Search Generative Experience)という名前の検索ラボの実験から始めます

機械学習

大規模言語モデルの探索 -Part 1

この記事は主に自己学習のために書かれていますそのため、広範囲かつ深い内容です興味のあるセクションをスキップしたり、自...

データサイエンス

「NVIDIAの人工知能がOracle Cloud Marketplaceで利用可能に」

ジェネラティブAIモデルのトレーニングがさらに容易になりました。 NVIDIA DGX Cloud AIスーパーコンピューティングプラット...