マイクロソフトの研究者が提案するTaskWeaver:LLMを活用した自律エージェントの構築のためのコード優先の機械学習フレームワーク

マイクロソフトの研究者が提案するTaskWeaver:LLMを活用した自己学習エージェント構築のための機械学習コード優先フレームワーク

大規模言語モデル(LLMs)は、印象的な自然言語生成および解釈能力を示しています。これらのモデルの例には、GPT、Claude、Palm、Llamaがあります。チャットボット、バーチャルアシスタント、コンテンツ生成システムなど、様々な応用でこれらのモデルが広く使用されています。LLMsは、より直感的かつ自然な体験を提供することで、人々がテクノロジーとのインタラクションを完全に変えることができます。エージェントは、自律的なエンティティであり、タスクの計画、環境の監視、適切な対応策の実施が可能です。LLMsやその他のAI技術を使用するエージェントも、このカテゴリに該当します。

Langchain、Semantic Kernel、Transformers Agent、Agents、AutoGen、およびJARVISなど、多くのフレームワークがタスク指向の対話にLLMsを使用しようと試みています。これらのフレームワークを使用すると、ユーザーは自然言語で質問をして回答を得ることで、LLMパワードのボットと対話することができます。ただし、多くのフレームワークには、データ分析活動や特定の領域に固有の状況にうまく対応できる機能が制約されているという欠点があります。現在のほとんどのフレームワークには、洗練されたデータ構造を処理するためのネイティブサポートの不足がその主な欠点の一つです。データ分析アプリケーションや他の多くのビジネスシナリオでは、LLMパワードエージェントはネストされたリスト、辞書、またはデータフレームなどの複雑なデータ構造を処理する必要があります。

ただし、現在の多くのフレームワークは、特にデータを複数のプラグインやチャットラウンド間で共有する場合に、これらの構造の管理に支援が必要です。これらの状況では、フレームワークは複雑な構造を文字列またはJSONオブジェクトとしてエンコードし、プロンプトに保持するかデータをディスクに永続化します。これらの手法は機能しますが、特に大規模なデータセットで作業する場合には困難になり、エラーレートを上げることがあります。現在の方法がドメイン知識を組み込むために設定可能ではないという別の欠点もあります。これらのフレームワークは、迅速なエンジニアリングツールとサンプルを提供する一方で、ドメイン固有の情報を計画とコード生成プロセスに組み込むための体系的な手段を提供する必要があります。

特定のドメインニーズに合わせて計画とコード生成プロセスを制御することは制約のために難しいです。現在の多くのフレームワークには、ユーザーの要件の広範な範囲に対応することが困難になる可能性があるという別の問題もあります。プラグインは一般的な要件を処理できますが、臨時の要求を処理するためには支援が必要です。臨時のクエリごとに別のプラグインを作成することは現実的ではありません。ユーザーのクエリを実行するために独自のコードを開発できるエージェントの能力は、これらの場合には重要になります。この問題を解決するには、独自のコードの実行とプラグインの実行をスムーズに統合するソリューションが必要です。

これらの欠点を克服するために、Microsoftの研究チームはTaskWeaverというLLMパワードの自律エージェントを作成するためのコードファーストフレームワークを提案しました。TaskWeaverの特徴的な機能は、ユーザー定義のプラグインを呼び出し可能な関数として扱うことで、各ユーザーリクエストを実行可能なコードに変換することができることです。TaskWeaverは、洗練されたデータ構造のサポート、柔軟なプラグインの使用、および動的なプラグインの選択を提供し、他のフレームワークの制約を克服するのに役立ちます。TaskWeaverはLLMsのコーディング能力を活用して複雑なロジックを実装し、例を通じてドメイン固有の知識を統合します。

さらに、TaskWeaverは開発者に直感的なインターフェースを提供し、作成されたコードの安全な実行を大幅に向上させています。研究チームは、TaskWeaverのアーキテクチャと実装について説明し、さまざまなジョブをどのようにうまく処理するかを示すいくつかの事例研究を紹介しています。TaskWeaverは、課題の多いジョブを処理し、特定のドメイン条件に適合するために変更することが可能な知能を持つ会話エージェントを作成するための強力で柔軟なフレームワークを提供しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「DenseDiffusionとの出会い:テキストから画像生成における密なキャプションとレイアウト操作に対処するためのトレーニング不要のAI技術」

テキストから画像を生成するモデルの最近の進歩により、短いシーンの説明に基づいて高品質の画像を生成することができる洗練...

AI研究

AIを使用してAI画像の改ざんを防ぐ

「PhotoGuard」は、MIT CSAILの研究者によって開発されたもので、不正な画像操作を防ぎ、高度な生成モデルの時代において信頼...

データサイエンス

データ管理における機械学習の活用

機械学習はデータ管理を変革し、拡張性、リアルタイム分析、個別化の解決策を提供しています' (Kikai gakushū wa dēta kanri ...

機械学習

「夢を先に見て、後で学ぶ:DECKARDは強化学習(RL)エージェントのトレーニングにLLMsを使用するAIアプローチです」

強化学習(RL)は、環境との相互作用によって複雑なタスクを実行することを学ぶことができる自律エージェントの訓練手法です...

機械学習

「2024年に探索する必要のある10の最高のGPU」

イントロダクション 人工知能(AI)、機械学習(ML)、深層学習(DL)の時代において、驚異的な計算リソースの需要は最高潮に...

AIニュース

「OpenAIがGPT-4の力を持つChatGPT Enterpriseを発表」

AI研究の先駆的な組織であるOpenAIは、人工知能の世界における興奮をもたらす新たな章を紹介しました – ChatGPT Enterp...