マイクロソフトとジョージア工科大学の研究者が、ヘッドウォーンデバイスを使用した多様な舌ジェスチャー認識技術「TongueTap」を紹介しました

「TongueTap」 マイクロソフトとジョージア工科大学の研究者が開発した舌ジェスチャー認識技術をご紹介

スマートウェアラブルテクノロジーの急速な発展において、スムーズで手を使わず誰もが使えるインタラクションを追求するといくつか画期的な発見がありました。TongueTapは、舌のジェスチャー認識を可能にするために複数のデータストリームを同期させる技術であり、非常に有望です。この方法により、ユーザーは手や目を使わずに静かにインタラクションを行い、通常は口の内側または近くに配置される特別なインターフェースなしで操作することができます。

ジョージア工科大学の研究者は、Microsoft Researchとの共同研究により、TongueTapという舌のジェスチャーインターフェースを開発しました。このインターフェースは、Muse 2とReverb G2 OEの2つの商用ヘッドセットのセンサーを組み合わせて作成されました。両方のヘッドセットにはIMUsと光電プレソモグラフィ(PPG)センサーが含まれています。また、そのうちの1つのヘッドセットには脳波測定(EEG)、視線追跡、および頭部追跡センサーも搭載されています。これらの2つのヘッドセットからのデータは、多様な脳-コンピュータインターフェースに一般的に使用される時刻同期システムであるLab Streaming Layer(LSL)を使用して同期されました。

研究チームは、EEG信号に対してSciPyを使用して128Hzのローパスフィルターを適用し、独立成分分析(ICA)を実施しました。他のセンサーには、それぞれのセンサーごとに主成分分析(PCA)を適用しました。ジェスチャー認識には、Scikit-LearnのSupport Vector Machine(SVM)を使用し、放射基底関数(RBF)カーネルを使用してハイパーパラメータC=100およびgamma=1でバイナリ分類を行い、データウィンドウがジェスチャーを含んでいるかどうかまたはノンジェスチャーであるかを判定しました。

研究者は16人の参加者を対象に舌のジェスチャー認識の評価のために大規模なデータセットを収集しました。研究から最も興味深い結果は、どのセンサーが舌のジェスチャーの分類に最も効果的であったかです。MuseのIMUは単独でも80%の精度を達成し、MuseのIMUを含む多様なPPGセンサーの組み合わせは94%の精度を達成しました。

最も精度が高いセンサーに基づいて、耳の後ろにあるIMUは舌のジェスチャーを検出するための低コストな手法であり、これまでの口内感覚アプローチと組み合わせることができます。舌のジェスチャーを製品に対して実用的にするためには、信頼性のあるユーザー非依存の分類モデルが重要です。より現実的な環境にジェスチャーが応用できるようにするには、複数のセッションや環境間の移動を含むエコロジカルに妥当な研究デザインが必要です。

TongueTapは、スムーズで直感的なウェアラブルデバイスのインタラクションへの大きな進歩です。市販の技術を使用して舌のジェスチャーを識別し分類する能力により、秘密のような正確なヘッドウェアデバイスの制御が可能になる未来が見えます。舌のジェスチャーを制御するための最も有望な応用は、ARインターフェースの制御です。研究者は、ARヘッドセットでの使用や他の視線ベースのインタラクションとの比較を行いながら、さらなる研究によってこの多機能な相互作用を探求する予定です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Mixtral 8x7Bについて知っていること ミストラルの新しいオープンソースLLM」

「ミストラルAIは、オープンソースのLLM(語彙・言語モデル)の領域で限界に挑戦する最も革新的な企業の一つですミストラルの...

データサイエンス

「メーカーに会う ロボット学生がNVIDIA Jetsonを搭載した自律型車椅子を発表する」

AIの助けを借りて、ロボット、トラクターやベビーカー、さらにはスケートパークさえも自律化しています。Kabilan KBという開...

AIニュース

「Amazon SageMakerを使用して、Llama 2モデルのスループット性能を向上させる」

機械学習(ML)の普及において、私たちは興奮する転換点にいます私たちは、ほとんどの顧客の体験やアプリケーションが生成型A...

AI研究

イタリアの新しいAI研究は、音楽合成と音源分離の両方が可能な拡散ベースの生成モデルを紹介しています

人間は、音楽の作曲や合成、分析、つまり音源の分離など、複数の音源を同時に処理することができます。つまり、人間の脳は、...

機械学習

「生成AIをめぐる旅」

私の豊富な経験に深く踏み込んで、全力でGenerative AIを受け入れ、あなたが利益を得るために活用できる貴重な洞察と知識を得...

データサイエンス

機械学習モデルを成長させる方法の学習

新しいLiGO技術により、大規模な機械学習モデルのトレーニングを加速し、AIアプリケーションの開発にかかる費用と環境負荷を...