マイクロソフトAIチームがPhi-2を紹介:2.7Bパラメーターの小型言語モデルで、優れた推論能力と言語理解能力を示します

マイクロソフトAIチームによるPhi-2紹介:小型ながら2.7Bパラメーターの言語モデルが驚異的な推論能力と言語理解能力を発揮

“`html

言語モデルの開発は、従来、モデルのサイズが大きいほど性能が優れているという前提のもとで行われてきました。しかし、この確立された信念から逸脱し、マイクロソフトリサーチの機械学習基礎チームの研究者たちは、パラメータ数27億の画期的な言語モデル「Phi-2」を導入しました。このモデルは、従来のスケーリング法則に反する特性を持ち、モデルのサイズだけが言語処理能力の決定因子とされる広く共有されている考え方に挑戦しています。

この研究では、優れた性能が大きなモデルを必要とするという一般的な仮定について考察されています。研究者たちは、Phi-2を通常から逸脱したパラダイムシフトとして紹介しています。この記事では、Phi-2の特徴的な属性とその開発に取り組んだ革新的な手法について詳しく説明しています。Phi-2は、従来のアプローチとは異なり、厳選された高品質なトレーニングデータに依存し、より小さいモデルからの知識転移を活用しています。これにより、言語モデルのスケーリングにおける確立された慣行に立ち向かう力強い挑戦を示しています。

Phi-2の方法論の基盤は、2つの重要な洞察にあります。まず、研究者たちは、トレーニングデータの品質の重要性を強調し、モデルに推論、知識、常識を注入するために「教科書品質」と設計されたデータを使用しています。また、革新的な技術が駆使され、1.3億のパラメータPhi-1.5から始まるモデルの洞察力の効率的なスケーリングを実現しています。この記事では、Phi-2のアーキテクチャについて詳しく掘り下げており、合成データとWebデータセットでトレーニングされた次の単語予測を目的とするTransformerベースのモデルを特徴としています。Phi-2はその控えめなサイズにもかかわらず、さまざまなベンチマークでより大きなモデルを凌駕し、その効率性と優れた能力を示しています。

結論として、マイクロソフトリサーチの研究者は、Phi-2を言語モデルの開発における革新的な力として提案しています。このモデルは、モデルの能力が本質的にサイズに結び付いているという業界の長年の信念に挑戦するだけでなく、成功裏に反証しています。このパラダイムシフトは、従来のスケーリング法則に厳密に従うことなく達成できる効率性を強調し、新たな研究の視点や可能性を重視しています。Phi-2の特徴的な高品質なトレーニングデータと革新的なスケーリング技術は、自然言語処理分野における大きな進歩を示し、将来の新しい可能性と安全な言語モデルを約束しています。

The post Microsoft AI Team Introduces Phi-2: A 2.7B Parameter Small Language Model that Demonstrates Outstanding Reasoning and Language Understanding Capabilities appeared first on MarkTechPost.

“`

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「ChatGPTは私たちを出し抜いているのか? チューリングテストの視点からの探求」

「機械は思考することができるのか?この記事は、チャットGPTの性能をチューリングテストが設定した厳しい基準に基づいて調査...

データサイエンス

「カスタムPyTorchオペレーターを使用してDLデータ入力パイプラインを最適化する方法」

この投稿は、GPUベースのPyTorchワークロードのパフォーマンス分析と最適化に関する一連の投稿の5番目であり、直接的な続編で...

データサイエンス

データセットシフトのフレームワークを整理する

私たちはモデルを訓練し、それらを使用して特定の結果を予測します入力のセットが与えられた場合に、それが機械学習のゲーム...

データサイエンス

データ変換ツールにおけるAIの展望

人工知能はデータ変換ツールを革新し、効率性、正確性、リアルタイム処理を向上させています

人工知能

「AIオートメーションエージェンシーのリードを増やす方法(月間100件以上のミーティング)」

「顧客を見つけることは数のゲームであり、多くの時間を要しますAIにすべての困難な仕事を任せない限り」

AIニュース

「AIを活用して国連の持続可能な開発目標に取り組む15のプロジェクト」

「Google.orgは、AIを活用して国連の持続可能な開発目標に進展をもたらすための15のプロジェクトを資金提供しています」