マイクロソフトの研究者は、テキスト重視の画像の機械読み取りのためのマルチモーダルリテラシーモデルであるKosmos-2.5を紹介しました

Microsoftの研究者は、テキスト重視の画像の機械読み取りのためのKosmos-2.5というマルチモーダルリテラシーモデルを紹介しました

近年、大規模言語モデル(LLM)が人工知能の中で注目を浴びていますが、これまで主にテキストに焦点を当て、視覚的な内容の理解に苦労してきました。多モーダル大規模言語モデル(MLLM)は、このギャップを埋めるために登場しました。MLLMは、ビジュアルとテキストの情報を単一のTransformerベースのモデルで組み合わせ、両方のモダリティからコンテンツを学習・生成することができるため、AIの能力の大幅な向上をもたらします。

KOSMOS-2.5は、統一されたフレームワーク内で2つの密接に関連する転写タスクを処理するために設計された多モーダルモデルです。最初のタスクは、空間認識を持つテキストブロックを生成し、テキストリッチな画像内のテキスト行に空間座標を割り当てることです。2番目のタスクは、さまざまなスタイルと構造を捉えたマークダウン形式の構造化されたテキスト出力を生成することに焦点を当てています。

両方のタスクは、共有のTransformerアーキテクチャ、タスク固有のプロンプト、および適応可能なテキスト表現を利用した単一のシステムで管理されています。モデルのアーキテクチャは、ViT(Vision Transformer)に基づくビジョンエンコーダと、Transformerアーキテクチャに基づく言語デコーダを組み合わせ、リサンプラモジュールを介して接続されています。

このモデルを訓練するためには、テキストが多い画像の大規模なデータセットで事前トレーニングを行います。このデータセットには、境界ボックス付きのテキスト行とプレーンなマークダウンテキストが含まれています。このデュアルタスクトレーニングのアプローチにより、KOSMOS-2.5の全体的な多モーダルリテラシー能力が向上します。

上記の画像は、KOSMOS-2.5のモデルアーキテクチャを示しています。KOSMOS-2.5の性能は、エンドツーエンドのドキュメントレベルのテキスト認識と、マークダウン形式の画像からのテキスト生成の2つの主要なタスクで評価されます。実験結果は、テキスト集中の画像タスクの理解力における強力なパフォーマンスを示しています。さらに、KOSMOS-2.5は、フューショットおよびゼロショット学習を含むシナリオで有望な能力を発揮し、テキストリッチな画像を扱う実世界のアプリケーションにおいて、多目的なツールとなります。

これらの有望な結果にもかかわらず、現在のモデルにはいくつかの制限があり、貴重な将来の研究方向を提供しています。たとえば、KOSMOS-2.5は現在、テキストの空間座標を入力と出力として事前トレーニングしているにもかかわらず、自然言語の指示を使用してドキュメント要素の位置を細かく制御することはサポートしていません。広範な研究領域では、モデルのスケーリング能力の開発をさらに進めるという重要な方向性があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

データサイエンス

「マシンラーニングによるNBAの給与予測」

NBAは、スポーツの中でも最も利益の上がる競争力のあるリーグの一つとして際立っていますここ数年、NBA選手の給与は上昇傾向...

機械学習

写真を撮るだけで、財産の査定を簡単にする

MIT卒業生によって設立されたHosta a.i.の技術は、写真から詳細な物件評価を作成します

機械学習

「AIとMLが高い需要になる10の理由」 1. ビッグデータの増加による需要の増加:ビッグデータの処理と分析にはAIとMLが必要です 2. 自動化の需要の増加:AIとMLは、自動化されたプロセスとタスクの実行に不可欠です 3. 予測能力の向上:AIとMLは、予測分析において非常に効果的です 4. パーソナライズされたエクスペリエンスの需要:AIとMLは、ユーザーの行動と嗜好を理解し、パーソナライズされたエクスペリエンスを提供するのに役立ちます 5. 自動運転技術の需要の増加:自動運転技術の発展にはAIとMLが不可欠です 6. セキュリティの需要の増加:AIとMLは、セキュリティ分野で新たな挑戦に対処するために使用されます 7. ヘルスケアの需要の増加:AIとMLは、病気の早期検出や治療計画の最適化など、医療分野で重要な役割を果たします 8. クラウドコンピューティングの需要の増加:AIとMLは、クラウドコンピューティングのパフォーマンスと効率を向上させるのに役立ちます 9. ロボティクスの需要の増加:AIとMLは、ロボットの自律性と学習能力を高めるのに使用されます 10. インターネットオブシングス(IoT)の需要の増加:AIとMLは、IoTデバイスのデータ分析と制御に重要な役割を果たします

「2024年におけるAIとMLの需要急増を促している10の主要な要因を発見し、さまざまな産業で探求しましょう技術の未来を探索し...

機械学習

Stability AIが初の日本語ビジョン言語モデルをリリース

単一かつ包括的なモデルを作成し、さまざまなユーザー定義のタスクを処理できるようにすることは、人工知能(AI)研究の分野...

機械学習

「機械学習に人間のミスを組み込む」

科学者たちは、機械学習システムに不確実性を取り入れています

機械学習

「Amazon SageMaker JumpStartを使用して、2行のコードでファウンデーションモデルを展開して微調整する」

「Amazon SageMaker JumpStart SDKのシンプル化されたバージョンの発表をお知らせすることを楽しみにしていますこのSDKを使用...