不確実な現実世界の状況においてマシンを効果的にトレーニングするための方法

Method for effectively training machines in uncertain real-world situations.

研究者たちは、「生徒」となる機械が先生に従うべきか、自ら学習するべきかを決定するアルゴリズムを開発しました。

左側には複雑な数学が書かれた黒板が並び、対角線に切り取られたシーンです。右側には、頭部のシルエットがあり、頭の中には電球があります。頭部はニューラルネットワークの緑色の球に接続されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「RNNにおける誤差逆伝播法と勾配消失問題(パート2)」

このシリーズの第1部では、RNNモデルのバックプロパゲーションを解説し、数式と数値を用いてRNNにおける勾配消失問題を説明し...

機械学習

デブセコプス:セキュリティをデブオプスのワークフローに統合する

この包括的なガイドでは、DevSecOpsの原則、利点、課題、実世界での使用例、およびベストプラクティスについて詳しく説明します

AI研究

ペンシルベニア大学の研究者たちは、腎臓のマッチングを改善し、移植片の失敗リスクを減らすための機械学習戦略の開発を行っています

AIは、遺伝子の特定の変異を分析することにより、腎移植のリスクを最小化することで、人々に希望の光をもたらしています。腎...

データサイエンス

LAION AIは、Video2Datasetを紹介しますこれは、効率的かつスケールでビデオとオーディオのデータセットをキュレーションするために設計されたオープンソースツールです

CLIP、Stable Diffusion、Flamingoなどの大規模な基盤モデルは、過去数年間にわたり、マルチモーダルな深層学習を劇的に向上...

AIニュース

「アソシエーテッド・プレスがジャーナリスト向けのAIガイドラインを発表」

人工知能(AI)の急速な進歩は、ジャーナリズムを含むさまざまな産業への統合の道を開いています。最近、アソシエーテッドプ...

機械学習

メトリックは欺くことができますが、目はできません:このAIメソッドは、ビデオフレーム補間のための知覚的な品質メトリックを提案します

ディスプレイ技術の進歩により、私たちの視聴体験はより強烈で楽しいものになりました。4K 60FPSで何かを観ることは、1080P 3...