「xTuringに会ってください:たった3行のコードで自分自身の大規模言語モデル(LLM)を作成できるオープンソースツール」

Meet xTuring An open-source tool for creating your own large-scale language model (LLM) in just 3 lines of code.

特定のアプリケーションのための大規模な言語モデル(LLM)の実用的な実装は、現在のところ、ほとんどの個人にとって困難です。特定のドメイン向けに高い精度と速度でコンテンツを生成したり、作文スタイルを模倣したりするためには、時間と専門知識が必要です。

Stochasticは、LLMの最適化と高速化に特化した明るいMLエンジニア、ポストドク、およびハーバード大学の卒業生のチームを持っています。彼らはxTuringというオープンソースのソリューションを紹介しており、ユーザーはたった3行のコードで独自のLLMを作成することができます。

自動テキストデリバリー、チャットボット、言語翻訳、コンテンツ制作などのアプリケーションは、これらの概念を活用して新しいアプリケーションを開発・作成しようとする人々の関心の対象です。これらのモデルをトレーニングや微調整することは、時間と費用がかかることがありますが、xTuringを使用すると、LLaMA、GPT-J、GPT-2、または他の手法を使用して、モデルの最適化を簡単かつ迅速に行うことができます。

xTuringの単一GPUまたはマルチGPUトレーニングフレームワークとしての汎用性により、ユーザーは特定のハードウェア構成にモデルを合わせることができます。メモリ効率の高い微調整手法(LoRAなど)をxTuringは使用しており、学習プロセスを高速化し、ハードウェアの費用を最大90%削減します。メモリの使用量を減らすことにより、LoRAはより迅速かつ効果的なモデルトレーニングを容易にします。

xTuringの微調整能力を評価するために、LLaMA 7Bモデルがベンチマークとして使用され、xTuringを他の微調整手法と比較したチームがあります。データセットは52Kの命令で構成され、335GBのCPUメモリと4つのA100 GPUが使用されました。

結果は、DeepSpeed + CPUオフロードを使用して、LLaMA 7Bモデルを1エポックあたり21時間トレーニングした場合、GPUの使用量は33.5GB、CPUの使用量は190GBでした。一方、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用して微調整する場合、メモリ使用量はそれぞれ23.7GBと21.9GBに劇的に減少しました。CPUによって使用されるRAMの量は14.9GBから10.2GBに減少しました。さらに、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用すると、トレーニング時間は1エポックあたり40分から20分に短縮されました。

xTuringを始めるのは簡単です。ツールのユーザーインターフェースは直感的に学習し使用できるように設計されています。ユーザーはマウスクリック数回でモデルを微調整し、xTuringが残りの作業を行います。使いやすさから、xTuringはLLMに初めて取り組む人や経験豊富な人にとっても優れた選択肢です。

チームによると、xTuringは大規模な言語モデルの微調整に最適なオプションであり、単一およびマルチGPUトレーニングが可能であり、LoRAのようなメモリ効率の高い手法を使用しており、直感的なインターフェースを備えています。

詳細については、Githubプロジェクト、および参考文献をご覧ください。この研究に関するすべてのクレジットは、このプロジェクトの研究者に帰属します。また、最新のAI研究ニュース、クールなAIプロジェクトなどを共有している17,000人以上のML SubRedditDiscordチャンネル、およびメールニュースレターにぜひご参加ください。

この記事はMarkTechPostによるものです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

バードの未来展望:よりグローバルで、よりビジュアル的で、より統合されたもの

「Bardのウェイトリストを終了し、より多くの地域をサポートするようになり、画像を導入し、パートナーアプリと連携すること...

コンピュータサイエンス

「アリババは、量子コンピューティングよりもこれを優先します」

中国のテック巨人であるアリババは最近、量子コンピューティング部門を廃止するという戦略的な重点の大幅な転換を発表しまし...

機械学習

AIは精神疾患の検出に優れています

重症患者のせん妄検知は、患者のケアや回復に重要な影響を与える複雑なタスクです。しかし、人工知能(AI)と迅速な反応型脳...

機械学習

このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています

最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成するこ...

AIニュース

「アルトマンのスティーブ・ジョブズモーメントとしてのOpenAIのCEO」

数日前、愛好家や専門家たちはOpenAIのDevDay、GPT-5、そしてMicrosoftとの資金提携について議論しました。人工知能の未来は...

機械学習

Falcon AI 新しいオープンソースの大規模言語モデル

はじめに Open AIによるGPT(Generative Pre Trained)の発表以来、世界はGenerative AIによって大いに沸き立っています。そ...