「xTuringに会ってください:たった3行のコードで自分自身の大規模言語モデル(LLM)を作成できるオープンソースツール」

Meet xTuring An open-source tool for creating your own large-scale language model (LLM) in just 3 lines of code.

特定のアプリケーションのための大規模な言語モデル(LLM)の実用的な実装は、現在のところ、ほとんどの個人にとって困難です。特定のドメイン向けに高い精度と速度でコンテンツを生成したり、作文スタイルを模倣したりするためには、時間と専門知識が必要です。

Stochasticは、LLMの最適化と高速化に特化した明るいMLエンジニア、ポストドク、およびハーバード大学の卒業生のチームを持っています。彼らはxTuringというオープンソースのソリューションを紹介しており、ユーザーはたった3行のコードで独自のLLMを作成することができます。

自動テキストデリバリー、チャットボット、言語翻訳、コンテンツ制作などのアプリケーションは、これらの概念を活用して新しいアプリケーションを開発・作成しようとする人々の関心の対象です。これらのモデルをトレーニングや微調整することは、時間と費用がかかることがありますが、xTuringを使用すると、LLaMA、GPT-J、GPT-2、または他の手法を使用して、モデルの最適化を簡単かつ迅速に行うことができます。

xTuringの単一GPUまたはマルチGPUトレーニングフレームワークとしての汎用性により、ユーザーは特定のハードウェア構成にモデルを合わせることができます。メモリ効率の高い微調整手法(LoRAなど)をxTuringは使用しており、学習プロセスを高速化し、ハードウェアの費用を最大90%削減します。メモリの使用量を減らすことにより、LoRAはより迅速かつ効果的なモデルトレーニングを容易にします。

xTuringの微調整能力を評価するために、LLaMA 7Bモデルがベンチマークとして使用され、xTuringを他の微調整手法と比較したチームがあります。データセットは52Kの命令で構成され、335GBのCPUメモリと4つのA100 GPUが使用されました。

結果は、DeepSpeed + CPUオフロードを使用して、LLaMA 7Bモデルを1エポックあたり21時間トレーニングした場合、GPUの使用量は33.5GB、CPUの使用量は190GBでした。一方、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用して微調整する場合、メモリ使用量はそれぞれ23.7GBと21.9GBに劇的に減少しました。CPUによって使用されるRAMの量は14.9GBから10.2GBに減少しました。さらに、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用すると、トレーニング時間は1エポックあたり40分から20分に短縮されました。

xTuringを始めるのは簡単です。ツールのユーザーインターフェースは直感的に学習し使用できるように設計されています。ユーザーはマウスクリック数回でモデルを微調整し、xTuringが残りの作業を行います。使いやすさから、xTuringはLLMに初めて取り組む人や経験豊富な人にとっても優れた選択肢です。

チームによると、xTuringは大規模な言語モデルの微調整に最適なオプションであり、単一およびマルチGPUトレーニングが可能であり、LoRAのようなメモリ効率の高い手法を使用しており、直感的なインターフェースを備えています。

詳細については、Githubプロジェクト、および参考文献をご覧ください。この研究に関するすべてのクレジットは、このプロジェクトの研究者に帰属します。また、最新のAI研究ニュース、クールなAIプロジェクトなどを共有している17,000人以上のML SubRedditDiscordチャンネル、およびメールニュースレターにぜひご参加ください。

この記事はMarkTechPostによるものです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「AIの潜在能力解放:クラウドGPUの台頭」

「クラウドGPU」とは、AIアプリケーションによる複雑な計算課題に対するスケーラブルでコスト効率の良い包括的なソリューショ...

人工知能

ChatGPTから独自のプライベートなフランス語チューターを作成する方法

議論された外国語チューターのコードは、私のGitHubページの同梱リポジトリで見つけることができます非商業利用に限り、自由...

データサイエンス

「LLMモニタリングと観測性 - 責任あるAIのための手法とアプローチの概要」

対象読者:実践者が利用可能なアプローチと実装の始め方を学びたい方、そして構築する際に可能性を理解したいリーダーたち…

機械学習

『Generative AIがサイバーセキュリティを強化する3つの方法』

人間のアナリストは、サイバーセキュリティ攻撃の速度と複雑さに対して効果的に防御することができなくなっています。データ...

AIテクノロジー

「AIサービスへの大胆な進出:億万長者ビンニー・バンサールの大局変革」

テクノロジーと電子商取引の世界では、Binny Bansalの名前はよく知られています。オンライン小売り大手Flipkartの共同創設者...