CapPaに会ってください:DeepMindの画像キャプション戦略は、ビジョンプレトレーニングを革新し、スケーラビリティと学習性能でCLIPに匹敵しています
Meet CapPa DeepMind's image captioning strategy innovates vision pre-training, competing with CLIP in scalability and learning performance.
「Image Captioners Are Scalable Vision Learners Too」という最近の論文は、CapPaと呼ばれる興味深い手法を提示しています。CapPaは、画像キャプションを競争力のある事前学習戦略として確立することを目的としており、DeepMindの研究チームによって執筆されたこの論文は、Contrastive Language Image Pretraining(CLIP)の驚異的な性能に匹敵する可能性を持つと同時に、簡単さ、拡張性、効率性を提供することを強調しています。
研究者たちは、Capと広く普及しているCLIPアプローチを比較し、事前学習コンピュータ、モデル容量、トレーニングデータを慎重に一致させ、公平な評価を確保しました。研究者たちは、Capのビジョンバックボーンが、少数派分類、キャプション、光学式文字認識(OCR)、視覚的問い合わせ(VQA)を含むいくつかのタスクでCLIPモデルを上回ったことがわかりました。さらに、大量のラベル付きトレーニングデータを使用した分類タスクに移行する際、CapのビジョンバックボーンはCLIPと同等の性能を発揮し、マルチモーダルなダウンストリームタスクにおける潜在的な優位性を示しています。
さらに、研究者たちは、Capの性能をさらに向上させるために、CapPa事前学習手順を導入しました。この手順は、自己回帰予測(Cap)と並列予測(Pa)を組み合わせたものであり、画像理解に強いVision Transformer(ViT)をビジョンエンコーダーとして利用しました。画像キャプションを予測するために、研究者たちは、標準的なTransformerデコーダーアーキテクチャを使用し、ViTエンコードされたシーケンスをデコードプロセスに効果的に使用するために、クロスアテンションを組み込みました。
- 最初のLLMアプリを構築するために知っておく必要があるすべて
- 再帰型ニューラルネットワークの基礎からの説明と視覚化
- AIは自己を食べるのか?このAI論文では、モデルの崩壊と呼ばれる現象が紹介されており、モデルが時間の経過とともに起こり得ないイベントを忘れ始める退行的な学習プロセスを指します
研究者たちは、訓練段階でモデルを自己回帰的にのみ訓練するのではなく、モデルがすべてのキャプショントークンを独立して同時に予測する並列予測アプローチを採用しました。これにより、デコーダーは、並列でトークン全体にアクセスできるため、予測精度を向上させるために、画像情報に強く依存できます。この戦略により、デコーダーは、画像が提供する豊富な視覚的文脈を活用することができます。
研究者たちは、画像分類、キャプション、OCR、VQAを含むさまざまなダウンストリームタスクにおけるCapPaの性能を、従来のCapおよび最先端のCLIPアプローチと比較するための研究を行いました。その結果、CapPaはほぼすべてのタスクでCapを上回り、CLIP*と同じバッチサイズで訓練された場合、CapPaは同等または優れた性能を発揮しました。さらに、CapPaは強力なゼロショット機能を備え、見知らぬタスクにも効果的な汎化が可能であり、スケーリングの可能性があります。
全体的に、この論文で提示された作業は、画像キャプションを競争力のあるビジョンバックボーンの事前学習戦略として確立することを示しています。CapPaの高品質な結果をダウンストリームタスクにおいて実現することにより、研究チームは、ビジョンエンコーダーの事前トレーニングタスクとしてのキャプションの探索を促進することを望んでいます。その簡単さ、拡張性、効率性により、CapPaは、ビジョンベースのモデルを進化させ、マルチモーダル学習の境界を押し広げるための興味深い可能性を開拓しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles