CapPaに会ってください:DeepMindの画像キャプション戦略は、ビジョンプレトレーニングを革新し、スケーラビリティと学習性能でCLIPに匹敵しています

Meet CapPa DeepMind's image captioning strategy innovates vision pre-training, competing with CLIP in scalability and learning performance.

「Image Captioners Are Scalable Vision Learners Too」という最近の論文は、CapPaと呼ばれる興味深い手法を提示しています。CapPaは、画像キャプションを競争力のある事前学習戦略として確立することを目的としており、DeepMindの研究チームによって執筆されたこの論文は、Contrastive Language Image Pretraining(CLIP)の驚異的な性能に匹敵する可能性を持つと同時に、簡単さ、拡張性、効率性を提供することを強調しています。

研究者たちは、Capと広く普及しているCLIPアプローチを比較し、事前学習コンピュータ、モデル容量、トレーニングデータを慎重に一致させ、公平な評価を確保しました。研究者たちは、Capのビジョンバックボーンが、少数派分類、キャプション、光学式文字認識(OCR)、視覚的問い合わせ(VQA)を含むいくつかのタスクでCLIPモデルを上回ったことがわかりました。さらに、大量のラベル付きトレーニングデータを使用した分類タスクに移行する際、CapのビジョンバックボーンはCLIPと同等の性能を発揮し、マルチモーダルなダウンストリームタスクにおける潜在的な優位性を示しています。

さらに、研究者たちは、Capの性能をさらに向上させるために、CapPa事前学習手順を導入しました。この手順は、自己回帰予測(Cap)と並列予測(Pa)を組み合わせたものであり、画像理解に強いVision Transformer(ViT)をビジョンエンコーダーとして利用しました。画像キャプションを予測するために、研究者たちは、標準的なTransformerデコーダーアーキテクチャを使用し、ViTエンコードされたシーケンスをデコードプロセスに効果的に使用するために、クロスアテンションを組み込みました。

研究者たちは、訓練段階でモデルを自己回帰的にのみ訓練するのではなく、モデルがすべてのキャプショントークンを独立して同時に予測する並列予測アプローチを採用しました。これにより、デコーダーは、並列でトークン全体にアクセスできるため、予測精度を向上させるために、画像情報に強く依存できます。この戦略により、デコーダーは、画像が提供する豊富な視覚的文脈を活用することができます。

研究者たちは、画像分類、キャプション、OCR、VQAを含むさまざまなダウンストリームタスクにおけるCapPaの性能を、従来のCapおよび最先端のCLIPアプローチと比較するための研究を行いました。その結果、CapPaはほぼすべてのタスクでCapを上回り、CLIP*と同じバッチサイズで訓練された場合、CapPaは同等または優れた性能を発揮しました。さらに、CapPaは強力なゼロショット機能を備え、見知らぬタスクにも効果的な汎化が可能であり、スケーリングの可能性があります。

全体的に、この論文で提示された作業は、画像キャプションを競争力のあるビジョンバックボーンの事前学習戦略として確立することを示しています。CapPaの高品質な結果をダウンストリームタスクにおいて実現することにより、研究チームは、ビジョンエンコーダーの事前トレーニングタスクとしてのキャプションの探索を促進することを望んでいます。その簡単さ、拡張性、効率性により、CapPaは、ビジョンベースのモデルを進化させ、マルチモーダル学習の境界を押し広げるための興味深い可能性を開拓しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

私が通常のRDBMSをベクトルデータベースに変換して埋め込みを保存する方法

この記事では、一般的なRDBMSを完全に機能したベクトルデータベースに変換して、GenerativeAIアプリケーションの開発に埋め込...

AI研究

「ハロー効果:AIがサンゴ礁保護に深く関与する」

珊瑚礁の急速な衰退が世界中で進んでいる中、ハワイマノア大学の研究者たちは、空から珊瑚礁の健康を監視するAIベースの調査...

機械学習

ディープラーニングによる触媒性能の秘密の解明:異種触媒の高精度スクリーニングのための「グローバル+ローカル」畳み込みニューラルネットワークのディープダイブ

触媒の表面の形状が、触媒のさまざまな特性によって特定の化学反応に影響を与えるため、私たちは表面化学でこれらの効果を研...

機械学習

「ディープラーニングベースのフレームワークを使用した高速かつ正確な音響ホログラム生成」

DGIST電気工学およびコンピュータサイエンス学科の黄宰潤教授率いるチームは、ホログラムに基づいたリアルタイムでの焦点超音...

データサイエンス

「高度な生成型AIの探求 | 条件付きVAEs」

はじめに この記事へようこそ。ここでは、生成AIのエキサイティングな世界を探求します。主にConditional Variational Autoen...

AIテクノロジー

ウェブサイトのためにChatGPTに適切なテクニカルテキストを書かせる方法

「長いテキストを書くように依頼しないでくださいできるだけ多くの詳細と仕様を提供し、適切な言語を使用し、AIディテクター...