メリーランド大学の新しいAI研究は、1日で単一のGPU上で言語モデルのトレーニングをするためのクラミングの課題を調査しています

Maryland University's new AI research investigates the challenges of training language models on a single GPU in one day.

自然言語処理の多くの領域では、言語解釈や自然言語合成を含む機械学習モデルの大規模トレーニングにおいて、トランスフォーマーのトポロジーを利用した画期的な進展が生まれています。これらのシステムの広く認識されている特性は、モデルのパラメータ数やデータのボリュームが増えるにつれて安定的にスケーリングするか、さらなる性能向上を続ける能力です。

ほとんどの研究は、極端な計算の限界を押し上げる新しい方法を見つけることに焦点を当てていますが、メリーランド大学の研究チームは、言語モデルのトレーニングを縮小する最善の方法とそのトレードオフについて調査しています。

研究者たちは、スケールの力が引き起こした非常に大きなモデルを構築する競争のために、言語モデルのトレーニングが可能であると考えています。初期のBERTモデルは、自然言語処理の多くの実世界アプリケーションで使用されています。ただし、このモデルをトレーニングするには、かなりの計算が必要でした。

比較的限られたリソースで、BERTと同等の性能を持つ言語モデルをトレーニングすることが可能であり、それにはいくつかの興味深い結果があります。その1つは、大規模モデルでは現在難しい追加の学術的な問い合わせを可能にし、スケールダウンしたモデルの事前トレーニングが大規模な計算の事前トレーニングの有望な相互対応関係であるかどうかを明確にすることです。研究者によると、公共のデータでトレーニングされた、出所の疑わしいモデルが受け入れられるかどうかは法的な問題があります。

メリーランド大学の研究者による新しい研究は、「Cramming」というチャレンジに取り組んでいます。つまり、試験の前日に言語モデル全体を学習することです。彼らの研究は、この制約のある状況でも、パフォーマンスが大規模な計算環境で見つかるスケーリングルールに密接に従うことを証明しています。この研究では、トレーニングパイプラインの変更がスケールダウンした状況でのパフォーマンス向上につながるかどうかを調査しています。

スケールダウンは困難です。モデルのサイズを小さくすることで、より高速な勾配計算が可能になりますが、時間の経過に伴うモデルの改善率はほぼ一定です。ただし、スケーリング法則を利用するトレーニングレシピの変更により、モデルのサイズを減少させることなく、勾配計算の効果的な速度を増加させることで、利益を生み出すことができます。最終的に、チームは予算の制約の中でモデルをトレーニングし、尊敬できるパフォーマンスを提供し、GLUEタスクでBERTに頻繁に迫り、時には超えることもありました。

チームは、トランスフォーマーベースの言語モデルが非常に限られた計算環境に収まる状況でのパフォーマンスを評価しています。彼らは、さまざまな変更要素がGLUEでの尊敬できる下流パフォーマンスをもたらすことを発見しました。チームは、この研究が「Cramming」の問題に関する調査の出発点となり、さまざまな改善策や戦略にさらなる洞察をもたらすことを期待しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

パーソナライズされたAIの簡単な作成方法:GPTの適応に向けたノーコードガイド

OpenAIは、カスタムChatGPTを作成するためのコード不要のアプローチで個人のAIカスタマイズを革新しています

データサイエンス

「データプライバシーとその経営への影響」

「データ管理がプライバシー法と統合され、ビジネスイノベーションを推進する一方で、消費者の権利を保護する方法を探求する」

人工知能

「不正行為の恐れにもかかわらず、学校はChatGPTの禁止を撤回する」

「かつてA.I.チャットボットをブロックしようと競っていた一部の地域は、今ではそれらを受け入れようと試みています」

機械学習

このAIの論文は、マルチビュー映像を使用して3Dシーンダイナミクスをモデリングするための画期的な方法を紹介しています

NVFiは、時間の経過に伴って進化する3Dシーンのダイナミクスを理解し予測するという複雑な課題に取り組んでいます。これは、...

機械学習

がん検出の革命:サリー大学が機械学習における画像ベースのオブジェクト検出ツールを発表し、ゲームチェンジとなる

先史時代以来、人々はコミュニケーションや文書化のためにスケッチを使用してきました。過去10年間、研究者たちは、分類や合...

データサイエンス

分子の言語を学び、その特性を予測する

このAIシステムは、分子の特性を予測するためにわずかな量のデータしか必要としませんこれにより、薬物の発見や材料の開発を...