「自然再造プロジェクトのグローバルな潜在能力のマッピング」

Mapping the global potential of the Nature Reengineering Project

地上観測、リモートセンシング、および機械学習を利用する

Stephen KlostermanとEarthshot Science Teamによる。内容は元々2022年12月に開催されたアメリカ地球物理学連合の秋の会議で発表されました。

はじめに

生態学的な復元プロジェクトでは、活動を開始するための投資が必要となります。森林の成長や保全プロジェクトにおける炭素金融の機会を創出するためには、木質バイオマスにおける炭素の蓄積、または森林伐採の防止による回避された排出を予測できることが必要です。これに加えて、植物や動物の種組成や水質など、他の多くの生態系の特性の変化を理解することも求められます。炭素蓄積の予測を作成するためには、通常は個別の場所のプロジェクトに個別の注意と研究努力を注ぐという方法が一般的ですが、これらの場所は世界中に散在している場合があります。そのため、生態系の復元の機会を迅速に「探し出す」作業のために、地理的に正確でグローバルな成長率や他の興味のあるパラメータ値の地図があれば便利です。ここでは、先行の文献レビューから得られたデータを用いてトレーニングされた機械学習モデルによってそのような地図を作成する方法を説明します。そして、Google Earth Engineアプリでアフリカの地図の実装をデモンストレーションします。

データと方法

私たちは最近公開された森林の立木バイオマス測定データセット、年齢、および地理的位置(Cook-Patton et al. 2020)を使用して、一般的に使用されるChapman-Richards(CR)成長関数のパラメータを予測するための機械学習モデルをトレーニングしました。

元の出版物と同様に、外れ値や非現実的な観測値をクリーニングした後、約2000の観測値が残りました。以下のグローバルマップでは、各サイトごとの観測数に比例したシンボルサイズで表示されています。

Global distribution of site-based data; symbol size proportional to number of measurements per site. Image by the author.

これらの観測値は390のサイトに分散しています。ほとんどのサイト(64%)は1つの観測値しか持っていませんが、274の観測値を持つサイトもあります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「企業におけるAIの倫理とESGへの貢献の探求」

全世界がAIで賑わっている中で、これらの技術によってもたらされる重要な課題には、倫理的な影響とESGへの関心があります”

機械学習

科学者たちは、AIと迅速な応答EEGを用いて、せん妄の検出を改善しました

うつ病を検出することは容易ではありませんが、それには大きな報酬があります。患者に必要な治療を迅速かつ確実に行うことで...

機械学習

「GCPの生成AI機能を活用して変革するBFSIサービス」

「ジェネラティブAI(Gen AI)サービスがクラウドプラットフォーム上で収束することで、BFSIセクターなどの産業革新に前例の...

データサイエンス

「AIがあなたの問題を解決できるでしょうか?」

「AIの能力を製品やサービスに組み込むことを目指す製品企業では、AIに詳しくない人々をAIの流れに乗せるという課題が常に存...

データサイエンス

AIのオリンピック:機械学習システムのベンチマーク

何年もの間、4分以内で1マイルを走ることは、単なる困難な課題ではなく、多くの人にとっては不可能な偉業と考えられていまし...

AI研究

「IBMの「脳のような」AIチップが、環境にやさしく効率的な未来を約束します」

興味深い進展として、テクノロジー巨人IBMが人工知能(AI)の世界を革新するかもしれない「脳のような」チップのプロトタイプ...