機械学習によるマルチビューオプティカルイリュージョンの作成:ダイナミックな画像変換のためのゼロショット手法の探索

マルチビューオプティカルイリュージョンの創造に向けた機械学習:ダイナミックな画像変換のためのゼロショット手法探求

アナグラムは、異なる角度から見るか、ひっくり返すことで外観が変化するイメージです。これらの魅力的な多角的視覚錯覚を生成するためには、通常、視覚知覚を理解してだます必要があります。しかし、新しいアプローチが登場し、これらの魅力的な多視点光学錯視を簡単かつ効果的に生成する方法を提供しています。

視覚錯覚を作成するためのさまざまなアプローチが存在しますが、ほとんどは人間がイメージをどのように理解するかについての特定の仮定に依存しています。これらの仮定はしばしば、われわれの視覚体験の本質をときどき捉えるだけの複雑なモデルにつながります。ミシガン大学の研究者たちは、新しい解決策を提案しています。人間が物事を見る方法に基づいたモデルを構築するのではなく、テキストからイメージへの拡散モデルを使用します。このモデルは人間の知覚について何も仮定しません。データのみから学習します。

この手法は、フリップや回転時に変形するイメージなど、古典的な錯視を生成するための新しい方法を提案しています。さらに、ピクセルを並び替えると外観が変化する「視覚アナグラム」と呼ばれる新しい錯視の領域にも進出しています。これには、フリップ、回転、ジグソーパズルのような複数の解を持つより複雑な変換も含まれます。この手法は、3つや4つの視点にまで拡張され、魅力的な視覚変換の範囲が広がっています。

この手法が機能するための鍵は、ビューを注意深く選択することです。画像に適用される変換は、ノイズの統計的特性を維持する必要があります。なぜなら、このモデルはランダム、独立、同一分布のガウスノイズを仮定してトレーニングされるからです。

この手法では、画像をさまざまな視点からデノイズするために、拡散モデルを利用して複数のノイズの推定値を生成します。これらの推定値は、逆拡散プロセスの1つのステップを容易にするために組み合わされます。 この論文では、これらの視点の効果を支持する経験的根拠が示され、生成される錯視の品質と柔軟性が紹介されています。

結論として、このシンプルでありながら強力な手法は、魅力的な多視点光学錯覚を作成するための新しい可能性を開拓しています。人間の知覚に対する仮定を避け、拡散モデルの機能を活用することで、視覚変換の魅力的な世界への新たなアプローチを提供しています。フリップ、回転、ポリモーフィックジグソーパズルなど、この方法は、視覚理解を魅了し挑戦する錯視を作り出すための多目的なツールを提供します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「生成型AIのGPT-3.5からGPT-4への移行の道程」

導入 生成型人工知能(AI)領域におけるGPT-3.5からGPT-4への移行は、言語生成と理解の分野での飛躍的な進化を示しています。...

人工知能

AIがDevSecOpsを再構築する3つの方法

開発者は、これらの3つのAI駆動のDevSecOpsトレンドを使用して、組織のセキュリティポスチャを評価することができます

AIニュース

「GoogleがニュースライターAI 'Genesis'をリリース」

メディアの景色を変えることが確実な技術の突破口として、Googleは「Genesis」と呼ばれるAIによるニュース記事生成ツールの開...

AIニュース

「生成AIにおける高度なエンコーダとデコーダの力」

はじめに 人工知能のダイナミックな領域では、技術と創造性の融合が人間の想像力の限界を押し上げる革新的なツールを生み出し...

機械学習

ディープラーニングのためのPythonとC++による自動微分

このストーリーでは、トレーニングループ中にパラメータの勾配を自動的に計算する現代のディープラーニングフレームワークの...