AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます

London researchers propose Spawrious, an image classification benchmark suite, to address the generalization gap in AI. It includes false correlations between classes and backgrounds.

人工知能の人気が高まるにつれ、新しいモデルがほぼ毎日リリースされています。これらのモデルには新しい機能や問題解決能力があります。近年、研究者たちは、AIモデルの抵抗力を強化し、スパリアスフィーチャーへの依存度を減らすアプローチを考えることに重点を置いています。自動運転車や自律型キッチンロボットの例を考えると、彼らは彼らが訓練データから学習したものと大きく異なるシナリオで動作する際に生じる課題のためにまだ広く展開されていません。

多くの研究がスパリアス相関の問題を調査し、モデルのパフォーマンスに対するその負の影響を軽減する方法を提案しています。ImageNetなどのよく知られたデータセットで訓練された分類器は、クラスラベルと相関があるが、それらを予測するわけではない背景データに依存していることが示されています。SCの問題に対処する方法の開発に進展はあったものの、既存のベンチマークの制限に対処する必要があります。現在のWaterbirdsやCelebA hair color benchmarksなどのベンチマークには制限があり、そのうちの1つは、現実では多対多(M2M)のスパリアス相関がより一般的であり、クラスと背景のグループを含む単純な1対1(O2O)スパリアス相関に焦点を当てていることです。

最近、ロンドン大学カレッジの研究チームが、クラスと背景の間にスパリアス相関が含まれる画像分類ベンチマークスイートであるSpawriousデータセットを導入しました。それは1対1(O2O)および多対多(M2M)のスパリアス相関の両方を含み、3つの難易度レベル(Easy、VoAGI、Hard)に分類されています。データセットは、テキストから画像を生成するモデルを使用して生成された約152,000の高品質の写真リアルな画像で構成されており、画像キャプションモデルを使用して不適切な画像をフィルタリングし、データセットの品質と関連性を確保しています。

Spawriousデータセットの評価により、現在の最先端のグループ頑健性アプローチに対してHard-splitsなどの課題が課せられ、ImageNetで事前学習されたResNet50モデルを使用してもテストされた方法のいずれも70%以上の正確性を達成できなかったことが示されました。チームは、分類器が間違った分類を行った際に背景に依存していることを見て、モデルのパフォーマンスの短所が引き起こされたと説明しています。これは、スパリアスデータの弱点を成功裏にテストし、分類器の弱点を明らかにすることができたことを示しています。

O2OとM2Mベンチマークの違いを説明するために、チームは、夏に訓練データを収集する例を使用しました。それは、2つの異なる場所から2つの動物種のグループで構成され、各動物グループが特定の背景グループに関連付けられているものです。しかし、季節が変わり、動物が移動すると、グループは場所を交換し、動物グループと背景の間のスパリアス相関が1対1で一致することはできなくなります。これは、M2Mスパリアス相関の複雑な関係と相互依存関係を捉える必要性を強調しています。

Spawriousは、OOD、ドメイン汎化アルゴリズムにおける有望なベンチマークスイートであり、スパリアスフィーチャーの存在下でモデルの評価と改善を行うためにも使用できます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

AIにおける意識の可能性の評価:神経科学理論に基づく指標特性の科学的探求

AIシステムが意識を持つ可能性は現在の注目のトピックです。トップの研究者たちは、人間の意識に関連する脳のプロセスからイ...

AIニュース

「GPTBotの公開:OpenAIがウェブのクロールに踏み出す大胆な一手」

デジタル革新の渦中で、OpenAIはGPTBotというウェブクローラーをリリースすることで注目を浴びています。この取り組みはAIの...

人工知能

GenAIOps:MLOpsフレームワークの進化

「2019年には、私はLinkedInのブログを公開しましたタイトルは『成功するためになぜML Opsが必要か』でした今日になって、分...

機械学習

スタビリティAIは、コーディングのための最初のLLMジェネレーティブAI製品であるStableCodeのリリースを発表します

Stability AIは、AIによるコーディング支援でデビューを飾る画期的な製品「StableCode」を発表しました。経験豊富なプログラ...

データサイエンス

Hamiltonを使って、8分でAirflowのDAGの作成とメンテナンスを簡単にしましょう

この投稿では、2つのオープンソースプロジェクト、HamiltonとAirflowの利点と、それらの有向非循環グラフ(DAG)が連携して動...

機械学習

このAI論文では、マルチビューの冗長性を超えるための新しいマルチモーダル表現学習手法であるFACTORCLを提案しています

機械学習における主要なパラダイムの一つは、複数のモダリティからの表現学習です。未ラベル付けされたマルチモーダルデータ...