AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます

London researchers propose Spawrious, an image classification benchmark suite, to address the generalization gap in AI. It includes false correlations between classes and backgrounds.

人工知能の人気が高まるにつれ、新しいモデルがほぼ毎日リリースされています。これらのモデルには新しい機能や問題解決能力があります。近年、研究者たちは、AIモデルの抵抗力を強化し、スパリアスフィーチャーへの依存度を減らすアプローチを考えることに重点を置いています。自動運転車や自律型キッチンロボットの例を考えると、彼らは彼らが訓練データから学習したものと大きく異なるシナリオで動作する際に生じる課題のためにまだ広く展開されていません。

多くの研究がスパリアス相関の問題を調査し、モデルのパフォーマンスに対するその負の影響を軽減する方法を提案しています。ImageNetなどのよく知られたデータセットで訓練された分類器は、クラスラベルと相関があるが、それらを予測するわけではない背景データに依存していることが示されています。SCの問題に対処する方法の開発に進展はあったものの、既存のベンチマークの制限に対処する必要があります。現在のWaterbirdsやCelebA hair color benchmarksなどのベンチマークには制限があり、そのうちの1つは、現実では多対多(M2M)のスパリアス相関がより一般的であり、クラスと背景のグループを含む単純な1対1(O2O)スパリアス相関に焦点を当てていることです。

最近、ロンドン大学カレッジの研究チームが、クラスと背景の間にスパリアス相関が含まれる画像分類ベンチマークスイートであるSpawriousデータセットを導入しました。それは1対1(O2O)および多対多(M2M)のスパリアス相関の両方を含み、3つの難易度レベル(Easy、VoAGI、Hard)に分類されています。データセットは、テキストから画像を生成するモデルを使用して生成された約152,000の高品質の写真リアルな画像で構成されており、画像キャプションモデルを使用して不適切な画像をフィルタリングし、データセットの品質と関連性を確保しています。

Spawriousデータセットの評価により、現在の最先端のグループ頑健性アプローチに対してHard-splitsなどの課題が課せられ、ImageNetで事前学習されたResNet50モデルを使用してもテストされた方法のいずれも70%以上の正確性を達成できなかったことが示されました。チームは、分類器が間違った分類を行った際に背景に依存していることを見て、モデルのパフォーマンスの短所が引き起こされたと説明しています。これは、スパリアスデータの弱点を成功裏にテストし、分類器の弱点を明らかにすることができたことを示しています。

O2OとM2Mベンチマークの違いを説明するために、チームは、夏に訓練データを収集する例を使用しました。それは、2つの異なる場所から2つの動物種のグループで構成され、各動物グループが特定の背景グループに関連付けられているものです。しかし、季節が変わり、動物が移動すると、グループは場所を交換し、動物グループと背景の間のスパリアス相関が1対1で一致することはできなくなります。これは、M2Mスパリアス相関の複雑な関係と相互依存関係を捉える必要性を強調しています。

Spawriousは、OOD、ドメイン汎化アルゴリズムにおける有望なベンチマークスイートであり、スパリアスフィーチャーの存在下でモデルの評価と改善を行うためにも使用できます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

『NVIDIAのCEO、ジェンソン・ファング氏がテルアビブで開催されるAIサミットの主演を務めます』

NVIDIAの創設者兼CEOであるJensen Huang氏は、10月15日から16日までテルアビブで開催されるNVIDIA AIサミットで、生成型AIと...

コンピュータサイエンス

ChatGPTはリベラル寄りです

英国のイーストアングリア大学の科学者たちによる研究によれば、OpenAIのChatGPTはリベラルな傾向を持っていると示唆しています

データサイエンス

「LLMファインチューニングにおけるPEFTテクニック」

イントロダクション 言語モデルまたはLLM(Language models)は、自然言語処理の世界を席巻しています。これらは人間に似たテ...

機械学習

「40以上のクールなAIツールをチェックアウトしましょう(2023年8月)」

DeepSwap DeepSwapは、説得力のあるディープフェイクのビデオや画像を作成したい人向けのAIベースのツールです。ビデオ、写真...

コンピュータサイエンス

AIブームの裏にある「デジタル・スウェットショップ」で働く海外労働者の軍団

フィリピンでは、非公式な政府の推定によると、200万人以上がAIの広範な部分として「クラウドワーク」を行っています

AI研究

スタンフォード大学の研究者が「局所的に条件付けられた拡散(Locally Conditioned Diffusion):拡散モデルを使用した構成的なテキストから画像への生成手法」を紹介しました

3Dシーンモデリングは従来、特定の知識を持つ人々に限られた時間のかかる手続きでした。パブリックドメインには多くの3D素材...