LoftQをご紹介します:大規模言語モデルのためのLoRA(Fine-Tuning-Aware Quantization)

LoRA(Fine-Tuning-Aware Quantization)についてご紹介:大規模言語モデル用のLoftQ

プリトレーニングされた言語モデル(PLM)の導入は、自然言語処理の分野において画期的な変革を示しています。プリトレーニングされたモデルは、自然言語理解(NLU)や自然言語生成(NLG)を含む幅広い言語タスクにおいて卓越した能力を示しています。これらのモデルは通常、数百万または数十億のパラメータを組み込んでおり、計算およびメモリの要件が大きくなっています。ただし、これらのモデルの計算およびメモリのニーズは、研究コミュニティに認識されているように、重要な課題を提起しています。

この論文で、著者たちは新しい量子化フレームワークであるLoRA-Fine-Tuning-aware Quantization (LoftQ)を紹介しています。このフレームワークは、量子化とLoRA微調整を必要とするプリトレーニングモデルに特化しています。このフレームワークは、元々の高精度のプリトレーニングウェイトを低ランク近似と組み合わせて近似的に表現することにより、効果的に機能します。

上記の画像は、QLoRAの異なるビットでのパフォーマンスを示しています。左:WikiText-2上のLLAMA-2-13bのQLoRA初期化。右:WikiText-2の言語モデリングタスクにおいてLLAMA-2-13bにQLoRAを適用。より小さい困惑度はより優れたパフォーマンスを示します。

量子化手法。LoftQがさまざまな量子化関数と互換性があることを示すために、2つの量子化手法を適用します:

・一様量子化は、古典的な量子化手法です。連続区間を均等に2N個に分割し、復元のために局所的な最大絶対値を格納します。

・QLoRAで使用されるNF4とその2ビットバリアントNF2は、高精度の値がガウス分布に従っていると仮定し、これらの値を等しい確率を持つ離散スロットにマッピングします。

私たちは全モデルに2ビットおよび4ビットの量子化を行い、4ビットおよび2ビットレベルでそれぞれ25〜30%、15〜20%の圧縮率を達成しました。すべての実験はNVIDIA A100 GPUで実施されました。

彼らの量子化フレームワークの評価は、NLU、質問応答、要約、NLGを含むさまざまな下位タスクでの包括的な実験を通じて行われます。これらの実験の結果は、LoftQがすべての精度レベルにおいて常にQLoRAを上回っていることを示しています。たとえば、4ビット量子化では、XSumおよびCNN/DailyMailのRouge-1の改善がそれぞれ1.1と0.8であります。自然言語処理の分野が進歩し続けるにつれ、PLMの膨大な潜在能力とその実用的な展開との間のギャップを埋めるため、さらなる革新と最適化が期待されており、幅広いアプリケーションとユーザーに利益をもたらすでしょう。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています

最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成するこ...

AI研究

Salesforce AIは、既存の拡散モデルを与えられた場合に、テキストから画像への拡散生成を行う新しい編集アルゴリズム「EDICT」を開発しました

最近のテクノロジーと人工知能の分野における進歩により、多くのイノベーションが生まれています。超トレンディなChatGPTモデ...

人工知能

『デイリースタンドアップで時間を無駄にしています』

「デイリースタンドアップは、中規模の製品エンジニアリングチームに年間6桁の金額をかけさせるので、必ず効果を上げる必要が...

人工知能

ChatGPTのデジタル商品をオンラインで販売するプロンプト

ChatGPTは、オンラインでデジタル製品を販売して収益を上げたい人にとって、ありがたい存在です

AIニュース

「先進的なマルチモーダル生成AIの探求」

イントロダクション テクノロジーの進歩する現代において、興奮すべき展開が現れています – 高度なマルチモーダルジェ...

人工知能

RAPIDS:簡単にMLモデルを加速するためにGPUを使用する

はじめに 人工知能(AI)がますます成長するにつれて、より高速かつ効率的な計算能力の需要が高まっています。機械学習(ML)...