LLMWareは、複雑なビジネスドキュメントを含む企業ワークフローに適した、生産用の微調整済みモデルであるRAG-Specialized 7BパラメータLLMを発表しました

ビジネスワークフローに適したRAG-Specialized 7BパラメータLLM:企業用、生産向けに微調整されたモデル

先月、Ai BloksはエンタープライズグレードのLLMベースのワークフローアプリケーションを構築するための開発フレームワーク、llmwareのオープンソース発表を行いました。今日、Ai BloksはDRAGONシリーズ(Delivering RAG on …)として知られる7BパラメータLLMのリリースと共に、次世代のRAGフレームワークの提供に向けてさらなる大きな進展を遂げました。これらのLLMは、複雑なビジネスおよび法的文書に基づく事実に基づく質問応答の特定の目的で細かく調整され、ビジネスワークフロー向けに設計されています。

より多くの企業が自社独自の情報を使用してスケーラブルなRAGシステムを展開することを目指すにつれて、以下の複数のニーズが認識されています:

  1. LLMモデルを周囲のワークフロー機能(ドキュメントの解析、埋め込み、プロンプト管理、ソースの検証、監査追跡など)と統合する統一されたフレームワーク。
  2. 事実に基づく質問応答とビジネスワークフローに最適化された、高品質で小型の特化LLM。
  1. オープンソースで費用対効果の高い、カスタマイズのための柔軟性とオプションを備えたプライベート展開。

これらのニーズに応えるため、LLMWareは、そのLLMWareDRAGONモデルの7つをオープンソースで提供します。これらのモデルは、Hugging Faceリポジトリーにあり、すべてがエンタープライズ用のRAGワークフローにおいて強力なプロダクショングレードの準備が整ったリーディングの基本モデルをベースに細かく調整されています。

全てのDRAGONモデルは、llmware rag-instruct-benchmarkを用いて評価され、その完全なテスト結果と方法論はリポジトリ内のモデルと共に提供されています。それぞれのDRAGONモデルは、100のコアテスト質問の幅広いセットに対して中から高い精度を実現し、幻覚を防ぐための強い根拠を持ち、パッセージから質問に対する答えが得られない場合(「見つからない」分類など)を特定することができます。

DRAGONモデルファミリーは、他の2つのLLMWare RAGモデルコレクションであるBLINGIndustry-BERTに加わります。 BLINGモデルは、開発者のノートパソコンで動作することが可能なGPU非必須のRAG専門の小型LLMモデル(1B〜3B)です。トレーニングの方法論が非常に似ているため、開発者はローカルのBLINGモデルから始め、本番でパフォーマンスを向上させるためにシームレスにDRAGONモデルに切り替えることができます。DRAGONモデルは、単一のエンタープライズグレードのGPUサーバー上でのプライベート展開を目的としており、企業は自社のセキュリティゾーンで安全かつプライベートにエンドツーエンドのRAGシステムを展開することができます。

このオープンソースのRAG専門モデルのスイートは、コアとなるLLMWare開発フレームワークとMilvusおよびMongo DBのオープンソースプライベートクラウドインスタンスとの統合を備えたエンドツーエンドのRAGソリューションを提供します。数行のコードで、開発者は数千のドキュメントの取り込みと解析、埋め込みベクトルのアタッチ、最新のLLMベースの生成推論の実行、証拠とソースの検証を自動化し、プライベートクラウドで実行することができます。場合によっては、単一の開発者のノートパソコンからさえ実行することができます。

AIブロックスのCEOであるダレン・オーベルストは、「私たちの信念は、LLM(低レイヤーマテリアル)が企業において新たな自動化ワークフローを可能にするということであり、私たちが提供するLLMWareのビジョンは、専門モデル、データパイプライン、すべての有効なコンポーネントを統合したオープンソースのフレームワークを通じて、企業が迅速にカスタマイズし、規模展開するためのLLMベースの自動化を実現することです。」と述べています。

詳細については、llmwareのgithubリポジトリを参照してください:www.github.com/llmware-ai/llmware.git

モデルへの直接アクセスについては、llmwareのHuggingface組織ページをご覧ください:www.huggingface.co/llmware

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

AIニュース

ChatGPTによって発明された10の感情(驚くほど共感できる)

ChatGPTは、私たち人間が感じる複雑な感情の配列を捉え、それに対して新しい言葉を作り出すことにおいて、巧みな能力を持って...

データサイエンス

デット (物体検出用トランスフォーマー)

注意:この記事は、コンピュータビジョンの複雑な世界について探求し、特にトランスフォーマーとアテンションメカニズムに焦...

機械学習

ラストマイルAIは、AiConfigをリリースしました:オープンソースの構成駆動型、ソースコントロールに対応したAIアプリケーション開発フレームワーク

AIアプリケーション開発の進化する風景の中で、AI Configは、LastMile Ai から登場し、開発者がAIモデルを統合し、管理する方...

人工知能

オープンソースとオープンイノベーションによるAIシーンの破壊

AIの運命は、オープンソースとオープンイノベーションを活用する小規模なVoAGI企業によって追い越されることですGoogleやOpen...

AI研究

「自己教師あり学習とトランスフォーマー? - DINO論文の解説」

「一部の人々は、Transformerのアーキテクチャを愛し、それをコンピュータビジョンの領域に歓迎しています他の人々は、新しい...