LinkedInとUCバークレーの研究者らは、AIによって生成されたプロフィール写真を検出する新しい方法を提案しています

LinkedIn and UC Berkeley researchers propose a new method for detecting AI-generated profile pictures.

人工知能(AI)による合成やテキストから画像生成されたメディアの普及とともに、偽プロフィールの洗練度が高まっています。LinkedInはUC Berkeleyと提携して、最先端の検出方法を研究しています。彼らの最近の検出方法は、人工的に生成されたプロフィール写真を99.6%の確率で正確に識別し、本物の写真を偽物として誤認識する割合はわずか1%です。

この問題を調査するには2種類の法科学的方法が使用できます。

  • 仮説に基づく方法は、合成的に作られた顔の異常を見つけることができます。この方法は、明白な意味の外れ者を学習することで利益を得ます。しかし、学習可能な合成エンジンは既にこれらの機能を持っているようです。
  • 機械学習などのデータ駆動型の方法は、自然な顔とCGIの顔を区別することができます。訓練システムに専門外の画像が提示されると、分類に苦労することはよくあります。

提案された手法は、まずコンピュータ生成の顔に固有の幾何学的属性を特定し、それを測定および検出するためにデータ駆動型の方法を使用するハイブリッドアプローチを採用しています。この方法は、軽量で素早く訓練可能な分類器を使用し、小さな合成顔のセットで訓練が必要です。5つの異なる合成エンジンを使用して、41,500の合成顔を作成し、追加のデータとして100,000のLinkedInプロフィール画像を使用しています。

公開されている実際のLinkedInプロフィール写真が合成生成された(StyleGAN2)顔とどのように比較されるかを見るために、彼らはそれぞれ平均400枚を並べて比較しました。人々の実際の写真は非常に異なっているため、ほとんどのプロフィール写真は一般的なヘッドショットにすぎません。一方、一般的なStyleGAN顔は非常に明確な特徴と鋭い目を持っています。これは、StyleGAN顔の眼底位置と眼間距離が標準化されているためです。実際のプロフィール写真は通常、上半身や肩に焦点を当てていますが、StyleGAN顔は首から上に合成される傾向があります。彼らは社会グループ内外の類似点と相違点を利用することを望んでいました。

FaceForensics++データセット内のディープフェイク顔交換を識別するために、研究者は1クラス変分オートエンコーダ(VAE)と基準1クラスオートエンコーダを組み合わせました。フェイススワップのディープフェイクに焦点を当てた過去の研究とは異なり、この研究では合成顔(例:StyleGAN)に重点が置かれています。研究者たちは、比較的少数の合成画像に対して非常に単純で訓練しやすい分類器も使用し、全体的な分類性能を同等に達成しています。

Generated.photosとStable Diffusionで生成された画像を使用して、モデルの汎化能力を評価します。生成的対抗ネットワーク(GAN)を使用して生成されたGenerated.photos顔は、比較的一般的な使用が可能であり、安定した拡散顔はそうではありません。

TPRは「真陽性率」を表し、偽の画像が正しく識別された割合を測定します。FPRを計算するには、偽のラベル付けがされた本物の画像の数を取ります。この研究の結果、提案された方法は、本物のLinkedInプロフィール写真のわずか1%(FPR)を偽物として正確に識別し、合成されたStyleGAN、StyleGAN2、およびStyleGAN3顔を99.6%(TPR)正しく識別します。

研究チームによると、この方法は切り抜き攻撃によって簡単に破られる可能性があり、これは大きな欠点です。StyleGANで生成された画像は既に顔の周りが切り取られているため、この攻撃によって異常なプロフィール写真が生成される可能性があります。彼らは高度な技術を使用し、スケールとトランスレーション不変表現を学習できるかもしれないと計画しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「MosaicMLは、AIユーザーが精度を向上し、コストを削減し、時間を節約するのを支援します」

スタートアップのMosaicMLは、大規模なAIモデルの簡単なトレーニングと展開のためのツールを提供することにより、AIコミュニ...

機械学習

「注意 シンクとキャッシュの配置場所 - ストリーミングLLM実装のビジュアルガイド」

最新のAI論文の一つは、テキストのための効率的で無制限の大きさのコンテキストウィンドウを可能にする、Generative Pre-trai...

データサイエンス

単一のマシンで複数のCUDAバージョンを管理する:包括的なガイド

私の以前の役職の一つでAIコンサルタントとして、仮想環境をPython環境を管理し、分離するツールとして利用するという課題が...

AI研究

スタンフォードの研究者たちは、分散変換の問題に適したシンプルかつスケーラブルな拡張であるDDBMsを提案しています

拡散モデルは最近、人工知能コミュニティで多くの成功と注目を浴びています。生成モデルの一種であるこれらのモデルは、デー...

機械学習

「Amazon SageMakerでのMLOpsによる堅牢な時系列予測」

データ駆動の意思決定の世界では、時系列予測は企業が過去のデータのパターンを利用して将来の結果を予測するための重要な要...

機械学習

「3D-VisTAに会いましょう:さまざまな下流タスクに簡単に適応できる、3Dビジョンとテキストの整列のための事前学習済みトランスフォーマー」

人工知能のダイナミックな景観では、進化が可能性の境界を再構築しています。三次元の視覚理解と自然言語処理(NLP)の複雑さ...