「キナラがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革命化」

「キナラがAra-2プロセッサを発表:美容とファッション界に革新的なオンデバイスAI処理でパフォーマンス向上」

Kinaraは、エネルギー効率の高いエッジAIのパイオニアであるAra-2プロセッサを発表しました。それは、前任者と比べて8倍の高性能を誇り、デバイス内で大規模な言語モデル(LLMs)とさまざまな生成AIモデルを強力にサポートする能力を備えています。

Kinaraのイノベーションへの執念から生まれたAra-2プロセッサは、プロセッサのラインアップの大きな進歩を表しており、顧客にはパフォーマンスとコストのオプションのスペクトラムが用意されています。チームはこの新しい追加の重要性を強調し、Ara-1とAra-2プロセッサの役割を詳細に説明しました。Ara-1はスマートカメラやエッジAIデバイスが2-8のビデオストリームを処理するのに優れている一方、Ara-2はエッジサーバー、ノートパソコン、高性能カメラに向けた16-32+のビデオストリームを素早く処理する能力を示しました。

チームはさらに、Ara-2の変革的な可能性について詳述し、物体検出、認識、トラッキングの向上におけるその重要な役割を強調しました。このプロセッサは、高度なコンピューティングエンジンを活用し、高解像度の画像を迅速かつ驚くほど高い精度で処理することに優れています。また、Generative AIモデルの処理能力は、Stable Diffusionに対して1枚の画像あたり10秒の速度を達成し、LLaMA-7Bに対しては秒間数十のトークンを生成できることで示されています。

Ara-1の後継として設計されたAra-2チップは、前任者と比べて5〜8倍もの大幅なパフォーマンス向上を約束しています。Kinaraは、Ara-2チップがさまざまなモデルで高コストで高消費電力のグラフィックスプロセッサを置き換える潜在能力を持つと主張しています。特に大規模な言語モデル(LLMs)のニーズに対応しています。

2024年1月のConsumer Electronics Show(CES)で発表される予定のAra-2プロセッサは、複数のバリエーションで提供されます。スタンドアロンチップ、単一チップのUSBおよびM.2モジュール、4つのAra-2チップを並列動作させるPCI Expressアドインボードとして利用できます。Kinaraはリリースを予想しながらも、価格の詳細を開示しておらず、愛好家や消費者がこの技術の驚異を探求することを待ち望んでいます。

まとめると、KinaraのAra-2プロセッサは、切り込んだパフォーマンス、多様性、効率を併せ持つオンデバイスAI処理の新時代を告げる存在です。CESでの近い展示は、エッジAI技術の領域を再定義する可能性のある変革的なツールを暗示して、産業界全体で興味を引き起こしています。

この投稿は、KinaraがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革新の投稿最初に現れました。MarkTechPostより。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

「あなたのAIが意識しているかどうかを判断する方法」

新しいレポートでは、科学者たちは機械の存在を示す可能性があるいくつかの測定可能な特性のリストを提供しています

人工知能

NVIDIAは、NTT DOCOMOと協力して世界初のGPU加速5Gネットワークを立ち上げます

世界中の企業の取締役会を席巻する生成AIの中で、グローバルな通信会社はどのようにコスト効率のよい方法でこれらの新たなAI...

AIニュース

「イスラエルがドローンの空域ネットワークを構築」

先週、イスラエルのエルサレムで自律型の空中タクシーがデモンストレーションされ、ハダッサ・アイン・ケレム病院から離陸し...

機械学習

デシは、コード生成のためのオープンソース1Bパラメータの大規模言語モデル「DeciCoder」を紹介します

AIの速い世界では、効率的なコード生成は見過ごすことのできない課題です。ますます複雑なモデルの出現に伴い、正確なコード...

AIテクノロジー

デイビッド・オーターさんがNOMIS 2023年度の著名科学者に選ばれました

NOMIS財団は、技術革新やグローバル化が労働者の仕事と収入の見通しに与える影響を理解するための貢献に対して、フォード経済...

AI研究

Google DeepMindの研究者は、機能を維持しながら、トランスフォーマーベースのニューラルネットワークのサイズを段階的に増やすための6つの組み合わせ可能な変換を提案しています

最近、トランスフォーマベースのニューラルネットワークは注目を集めています。トランスフォーマーアーキテクチャ(図1参照)...