K最近傍法の例の応用

K最近傍法の応用例

シンプルなアルゴリズムが思っているよりも実用的な理由

Brooke Cagleによる写真、Unsplashから

私の最初の機械学習アルゴリズムはK最近傍法(KNN)モデルでした。初心者には理にかなっています-直感的で理解しやすく、専用のパッケージを使用せずに実装できます。

初心者には理にかなっているため、機械学習に慣れていない人に説明する際にも非常に理にかなっています。KNNアプローチを使って疑い深い人々を説得することが、ブラックボックスのランダムフォレストよりもはるかに簡単であることを言葉で表現することはできません。

これはモデリング手法の無名のヒーローであり、より複雑なアルゴリズムに進む前の優れたベンチマークとして機能し、多くのユースケースでは、より複雑なアルゴリズムの時間とコストはそれに値しないかもしれません。

KNNのモデリングのインスピレーションを高めるために、実際のシナリオでは思っている以上に良い結果を得る可能性のある3つの例を紹介します。

マーケティングミックスモデリング(MMM)

私はマーケティングの仕事をしており、MMMシステムでの私の仕事は通常、キャンペーンのパフォーマンスを向上させるためのマーケティングチャネルを特定し、キャンペーンを拡大してより多くの人々に届けることです。大まかに言えば、これはマーケティング(またはメディア)ミックスモデリングとして知られています。

MMMとのモデリングにおける目標は、各マーケティングインプットの単独の効果と他のインプットとの組み合わせの効果を理解し、最大の効果を得るためにマーケティングミックスを最適化することです。

最も基本的なアプローチは、歴史的データに基づいて異なるマーケティング戦略の影響を予測することです。KNNモデルでは、各マーケティング戦略を広告費、プロモーション活動、価格戦略などのさまざまなマーケティングインプットとして多次元空間上のポイントとして考えます。

新しいマーケティング戦略が提案されたり、既存の戦略を最適化する必要がある場合、モデルは多次元空間での「k」最近傍となる過去の戦略を見て、その戦略の結果を予測することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

KITE(キーポイントを視覚的な基盤と正確なアクション推論の表現として使用する意味操作のためのAIフレームワーク)に会いましょう

人工知能の進歩に伴い、AI技術はロボットと組み合わせられるようになっています。コンピュータビジョンや自然言語処理からエ...

データサイエンス

チャットGPTを使用して複雑なシステムを構築する

イントロダクション ChatGPTなどのLLMにより、人工知能は期待を超えて進化しました。先進的な言語モデルであるGPT-4は、この...

AI研究

アップルの研究者がDeepPCRを公開:通常は順次処理される操作を並列化してニューラルネットワークの推論とトレーニングの速度を向上させる新しい機械学習アルゴリズム

人工知能や深層学習の進展により、さまざまな革新が実現されています。テキストや画像の合成、分割、分類などの複雑なタスク...

AI研究

GoogleがNotebookLMを導入:あなた専用の仮想研究アシスタント

Googleは、Google Labsから最新の実験的な提供であるNotebookLMを発表しています。以前はProject Tailwindとして知られていた...

機械学習

「ユーザーとの対話により、RAG使用例でのLLM応答を改善する」

最も一般的な生成AIと大規模言語モデル(LLM)の応用の1つは、特定の外部知識コーパスに基づく質問に答えることです情報検索...