「Johns Hopkins Medicineの研究者たちは、正確な骨肉腫壊死計算のための機械学習モデルを開発しました」
「ジョンズ・ホプキンス大学の研究者たちが、正確な骨肉腫壊死計算のための機械学習モデルを開発」
がん医療の領域において、骨がん患者における化学療法の効果を評価することは予後の重要な指標となります。ジョンズ・ホプキンス医学の研究チームはこの分野で画期的な進歩を達成しました。彼らは、骨肉腫患者における腫瘍死の程度を示す重要な指標である壊死率(Percent Necrosis, PN)を計算するための機械学習モデルを開発・訓練し、その精度が筋骨格病理学者による結果と比較して驚異的な85%、一部外れ値を除いた場合は99%に達することを実証しました。
PNの計算は従来、筋骨格病理学者による豊富な注釈データに依存する労働集約的なプロセスであると同時に、2人の病理学者が同じ全スライド画像(whole-slide images, WSIs)を分析しても異なる結論に至る低い相互観測者信頼性の問題も抱えています。これらの課題を認識し、研究者たちは代替的なアプローチの必要性を強調しました。
チームの取り組みは、最小限の注釈データがトレーニングに必要な弱く監視された機械学習モデルを開発することにつながりました。この革新的な方法論によれば、PN計算のためにモデルを利用する筋骨格病理学者は部分的に注釈付けされたWSIsの提供のみが求められるため、病理学者の作業量を大幅に削減することができます。
- スタンフォード大学の研究者がRT-Sketchを紹介します:目標仕様としての手描きスケッチを通じた視覚模倣学習の向上
- UCSDの研究者が、チューリングテストでのGPT-4のパフォーマンスを評価:人間のような欺瞞とコミュニケーション戦略のダイナミクスを明らかにする
- マイクロソフトの研究者たちは「エモーションプロンプト」を発表しました:複数の言語モデルにおけるAIの感情的知性を向上させる
このモデルの構築に際して、チームはジョンズ・ホプキンスの優れた米国の第三次がんセンターの病理学アーカイブからWSIsを含む包括的なデータセットを作成しました。このデータは、2011年から2021年の間にセンターで化学療法と手術を受けた骨中髄型骨肉腫の症例だけで構成されています。
筋骨格病理学者は、収集された各WSIs上の3つの異なる組織タイプ(活動性腫瘍、壊死腫瘍、非腫瘍組織)を綿密に注釈付けしました。さらに、病理学者は各患者に対してPNを推定しました。この貴重な情報を手に入れたチームは、訓練フェーズに入りました。
研究者たちはトレーニングプロセスを説明しました。彼らは、モデルに画像パターンの認識を教えることでモデルを訓練することにしました。WSIsは数千の小さなパッチに分割され、そこから病理学者がラベル付けした方法に基づいてグループに分けられました。最後に、これらのグループ化されたパッチがモデルにトレーニングのために提供されました。このアプローチは、モデルにより堅牢な参照フレームを提供するために選択されました。ただし、一つの大きなWSIを単独でモデルに与えると発生する可能性のある見落としを回避するためです。
訓練後、モデルと筋骨格病理学者によって、2人の骨肉腫患者の6つのWSIsが評価されました。その結果、モデルのPN計算と組織のラベリングとの間に85%の正の相関があり、筋骨格病理学者の結果と比較して驚異的な結果が得られました。ただし、軟骨組織を適切に識別することに時折困難があるため、一つのWSIにおいて軟骨が多く存在するため外れ値が生じました。その外れ値を除去すると、相関係数は素晴らしい99%にまで上昇しました。
チームは今後、モデルの訓練に軟骨組織を取り入れ、WSIsの範囲を骨中髄型骨肉腫以外のさまざまな型の骨肉腫に拡大することを予想しています。この研究は、骨肉腫の治療成績の評価を革新するために重要な一歩を示しています。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- インテルの研究者たちは、CPU上でLLMs(Large Language Models)をより効率的に展開するための新しい人工知能のアプローチを提案しています
- マイクロソフトの研究者たちは、FP8混合精度トレーニングフレームワークを公開しました:大規模な言語モデルのトレーニング効率を超高速化します
- 「MIT研究者がLILOを導入:プログラム合成のための解釈可能なライブラリを学ぶための神経シンボリックフレームワーク」
- アマゾンの研究者がフォーチュナを紹介:ディープラーニングにおける不確実性量子化のためのAIライブラリ
- 「ハギングフェイスの研究者たちは、Distil-Whisperを紹介しました:高性能でリソースが限られた環境におけるギャップを埋めるコンパクトな音声認識モデル」
- このAI研究は、単一の画像を探索可能な3Dシーンに変換する、パノラマニックNeRF(PERF)を紹介します
- このAI研究は、高品質なビデオ生成のための2つの拡散モデル、テキストからビデオ(T2V)モデルと画像からビデオ(I2V)モデルを紹介します