「Johns Hopkins Medicineの研究者たちは、正確な骨肉腫壊死計算のための機械学習モデルを開発しました」

「ジョンズ・ホプキンス大学の研究者たちが、正確な骨肉腫壊死計算のための機械学習モデルを開発」

がん医療の領域において、骨がん患者における化学療法の効果を評価することは予後の重要な指標となります。ジョンズ・ホプキンス医学の研究チームはこの分野で画期的な進歩を達成しました。彼らは、骨肉腫患者における腫瘍死の程度を示す重要な指標である壊死率(Percent Necrosis, PN)を計算するための機械学習モデルを開発・訓練し、その精度が筋骨格病理学者による結果と比較して驚異的な85%、一部外れ値を除いた場合は99%に達することを実証しました。

PNの計算は従来、筋骨格病理学者による豊富な注釈データに依存する労働集約的なプロセスであると同時に、2人の病理学者が同じ全スライド画像(whole-slide images, WSIs)を分析しても異なる結論に至る低い相互観測者信頼性の問題も抱えています。これらの課題を認識し、研究者たちは代替的なアプローチの必要性を強調しました。

チームの取り組みは、最小限の注釈データがトレーニングに必要な弱く監視された機械学習モデルを開発することにつながりました。この革新的な方法論によれば、PN計算のためにモデルを利用する筋骨格病理学者は部分的に注釈付けされたWSIsの提供のみが求められるため、病理学者の作業量を大幅に削減することができます。

このモデルの構築に際して、チームはジョンズ・ホプキンスの優れた米国の第三次がんセンターの病理学アーカイブからWSIsを含む包括的なデータセットを作成しました。このデータは、2011年から2021年の間にセンターで化学療法と手術を受けた骨中髄型骨肉腫の症例だけで構成されています。

筋骨格病理学者は、収集された各WSIs上の3つの異なる組織タイプ(活動性腫瘍、壊死腫瘍、非腫瘍組織)を綿密に注釈付けしました。さらに、病理学者は各患者に対してPNを推定しました。この貴重な情報を手に入れたチームは、訓練フェーズに入りました。

研究者たちはトレーニングプロセスを説明しました。彼らは、モデルに画像パターンの認識を教えることでモデルを訓練することにしました。WSIsは数千の小さなパッチに分割され、そこから病理学者がラベル付けした方法に基づいてグループに分けられました。最後に、これらのグループ化されたパッチがモデルにトレーニングのために提供されました。このアプローチは、モデルにより堅牢な参照フレームを提供するために選択されました。ただし、一つの大きなWSIを単独でモデルに与えると発生する可能性のある見落としを回避するためです。

訓練後、モデルと筋骨格病理学者によって、2人の骨肉腫患者の6つのWSIsが評価されました。その結果、モデルのPN計算と組織のラベリングとの間に85%の正の相関があり、筋骨格病理学者の結果と比較して驚異的な結果が得られました。ただし、軟骨組織を適切に識別することに時折困難があるため、一つのWSIにおいて軟骨が多く存在するため外れ値が生じました。その外れ値を除去すると、相関係数は素晴らしい99%にまで上昇しました。

チームは今後、モデルの訓練に軟骨組織を取り入れ、WSIsの範囲を骨中髄型骨肉腫以外のさまざまな型の骨肉腫に拡大することを予想しています。この研究は、骨肉腫の治療成績の評価を革新するために重要な一歩を示しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「機械学習におけるモデルの解釈性においてSHAP値の使用」

モデルの特徴が予測に与える影響を理解するのにSHAPがどのように役立つかを発見してください

機械学習

AIの脅威:自動化された世界における見えない課題

この記事では、2023年に現れるAIの脅威、AIシステムのセキュリティーの複雑さ、そしてAI駆動の防御、規制、教育の重要性につ...

データサイエンス

実験から展開へ:MLflow 101 | パート02

こんにちは👋、そしてこのブログの第2セグメントへの暖かい歓迎です!もし最初から一緒にいてくれたなら、最初の部分では…

人工知能

「思考の連鎖を自動化する:AIが自身に推論を促す方法」

Auto-CoTのプロンプト手法は、多様性に基づくサンプリングとゼロショット生成を使用して、LLMsが複雑な推論を促すために自ら...

AI研究

『NVIDIAの研究者たちが、現行のCTCモデルと互換性のあるGPU加速の重み付き有限状態トランスデューサ(WFST)ビームサーチデコーダを導入』

最近の人工知能の人気を受けて、自動音声認識(ASR)の分野は非常に進歩しました。これによって音声認識技術や人間とコンピュ...

データサイエンス

「Transformerの簡略化:あなたが理解する言葉を使った最先端のNLP — part 3 — アテンション」

「トランスフォーマーは、AIの分野で、おそらく世界中で重大な影響を与えていますこのアーキテクチャはいくつかのコンポーネ...