「ロボットのビジョン-言語プランニングにおけるGPT-4Vの力を発揮する方法は?ViLaと出会ってください:長期計画のためにGPT-4Vを活用するシンプルで効果的なAIメソッド」

「美とファッションの専門家が教える!GPT-4Vを使った言語プランニングの効果的な方法とViLaの魅力」

高レベルなパフォーマンスをロボットのタスクプランニングで達成する問題に対して、清華大学、上海人工知能研究所、上海騎至研究所の研究者がVision-Language Planning (VILA) を導入することで取り組んでいます。VILAはビジョンと言語の理解を統合し、GPT-4Vを使用して厳密な意味の知識をエンコードし、複雑なプランニング問題を解決することができます。これにより、ゼロショットのシナリオでも優れた能力を持つオープンワールドの操作タスクが可能になります。

この研究はLLMの進歩とビジョン-言語モデル(VLM)の拡大に関する成果を探求しており、ビジョン、言語、ビジョン-言語モデルへの事前学習モデルの応用をカテゴリー分けしています。重点はVLMのビジョンに基づいた特性を活用し、ロボティクスにおける長期的なプランニングの課題に共通知識を提供することです。GPT-4Vを搭載したVILAは、追加のトレーニングデータや文脈に関連する例を必要とせず、日常的な機能において優れた効果を発揮します。

シーンに関するタスクプランニングは、人間の知能の重要な側面であり、文脈の理解と適応性が求められます。LLMは複雑なタスクプランニングのための意味の知識をエンコードすることで優れた成果を上げていますが、ロボットに必要な世界の基盤が欠けています。この問題に対処するため、Robotic VILAはビジョンと言語処理を統合するアプローチです。従来のLLMベースの手法とは異なり、VILAはビジョンの手がかりと高レベルの言語の指示に基づいて行動可能な手順を生成するようにVLMを促し、人間の適応性と多様なシーンでの長期的なタスクプランニングを実現することを目指しています。

VILAはビジョン-言語モデルをロボットプランナーとして活用するプランニング手法です。VILAはビジョンを直接的に推論に組み込むことで、ビジュアル領域に根ざした常識的な知識を活用します。タスクプランニングのためのVLMとして事前学習されたGPT-4V(ision)を用います。実ロボットとシミュレート環境での評価により、VILAは多様なオープンワールドの操作タスクにおいて既存のLLMベースのプランナーに比べて優れたパフォーマンスを発揮します。空間レイアウトの処理、オブジェクト属性の考慮、マルチモーダルな目標の処理など、特徴的な機能を持っています。

VILAはオープンワールドの操作タスクにおいて既存のLLMベースのプランナーよりも優れた成果を上げます。空間レイアウト、オブジェクトの属性、マルチモーダルな目標において優れたパフォーマンスを発揮します。GPT-4Vの力を借りて、ゼロショットモードでも複雑なプランニング問題を解決することができます。VILAはエラーを大幅に減らし、空間配置やオブジェクトの属性、常識的な知識を必要とする優れたタスクを実行します。

まとめとして、VILAは高レベルの言語の指示を具体的な手順に効果的に変換する高度なロボティクスプランニング手法です。知覚データを統合し、ビジュアルの世界で常識的な知識を理解する能力により、既存のLLMベースのプランナーに比べて優れています。ただし、ブラックボックスのVLMに依存し、文脈に関連する例が不足しているという制約もあり、これらの課題を克服するために将来の改善が必要です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Underrepresented Groupsの存在下での学習について」

「ICML 2023で受け入れられた最新の成果をご紹介いたします『Change is Hard A Closer Look at Subpopulation Shift』という...

機械学習

「ひとつのAIモデルで全てのオーディオタスクをこなせるのか?UniAudioに出会ってください:新しいユニバーサルオーディオ生成システム」

生成AIの重要な側面の1つは音声生成です。近年、生成AIの人気の高まりにより、音声制作における多様で新興のニーズがますます...

人工知能

「両方の世界のベスト:人間の開発者とAIの協力者」

「これは、開発者を対象とした生成型AI生産性ツール(例:Github Copilot、ChatGPT、Amazon CodeWhisperer)が構造にどのよう...

データサイエンス

Btech卒業後に何をすべきですか?

Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキ...

AIニュース

エンタープライズAIプラットフォームは、Amazon Bedrockを利用したものです

さまざまな基礎モデルを使用したAmazon Bedrockの解説と、エンタープライズGen AIプラットフォームの構築方法についてのガイド

AI研究

ジュネーブ大学の研究者は、多剤耐性(MDR)腸内細菌感染の入院リスクを予測するためのグラフベースの機械学習モデルを調査しています

マシンラーニングは、医療で非常に重要なツールとして登場し、業界のさまざまな側面を革新しています。その主な応用の一つは...