Paellaを紹介します:安定した拡散よりもはるかに高速に高品質の画像を生成できる新しいAIモデル

Introducing Paella A new AI model that can generate high-quality images much faster than stable diffusion.

過去2〜3年で、人工知能(AI)を使用してテキストから画像を生成する方法に関する研究の質と量が驚異的に増加しています。この分野で最も画期的で革命的な作品の1つは、最先端の生成モデルである拡散モデルを参照しています。これらのモデルは、深層学習アルゴリズムの力を利用して、テキストの記述を使用して高品質の画像を生成する方法を完全に変革しました。また、拡散に加えて、他の多くの強力な技術が存在し、テキスト入力から写真のようなリアルなビジュアルコンテンツを生成するエキサイティングなパスが提供されています。ただし、これらの最先端の技術によって達成された例外的な結果には、特定の制限があります。新興の生成AI技術の多くは、拡散モデルに依存しており、トレーニングと画像生成に複雑なアーキテクチャと相当な計算リソースが必要です。これらの高度な手法はまた、推論速度を低下させ、リアルタイムの実装には不適切です。さらに、これらの技術の複雑さは、可能にする進歩に直接関連しており、これらのモデルの内部動作を把握する一般の人々にとって課題を提供し、ブラックボックスモデルとして認識される状況を引き起こしています。

この前述の懸念に対処するために、ドイツのTechnische Hochschule IngolstadtとWand Technologiesの研究チームは、新しいテキスト条件付き画像生成技術を提案しました。この革新的な技術は拡散に似ていますが、高品質の画像をはるかに速く生成します。この畳み込みベースのモデルの画像サンプリング段階は、わずか12ステップで実行でき、それでも例外的な画像品質を発揮します。このアプローチは、その卓越したシンプルさと、既存の最先端の技術に欠ける利点を楽しむためにモデルを条件付けることができることで際立っています。提案された技術の固有の単純さは、そのテキストから画像への技術を理解し、実装することができる、異なるバックグラウンドを持つ人々によって容易に利用できるようになりました。研究者は、実験評価を通じて自分たちの手法を検証するために、驚異的な10億のパラメーターを持つテキスト条件付きモデル「Paella」をトレーニングしました。チームはまた、彼らのコードとモデルの重みをMITライセンスの下でオープンソース化し、彼らの仕事に関する研究を促進するようにしました。

拡散モデルは、トレーニングインスタンスからノイズの異なるレベルを順次除去する学習プロセスを経ます。純粋なノイズが提示されると、モデルは数百ステップにわたってノイズを反復的に減算して画像を生成します。ドイツの研究者が考案した技術は、これらの拡散モデルの原則から大いに影響を受けています。拡散モデルと同様に、Paellaは、画像を表すトークンからさまざまな程度のノイズを除去し、新しい画像を生成するためにそれらを使用します。このモデルは、LAION-5B美的データセットからの9億の画像テキストペアでトレーニングされました。Paellaは、事前にトレーニングされた畳み込みニューラルネットワークに基づくエンコーダーデコーダーアーキテクチャを使用し、事前トレーニング中に学習された8,192トークンのセットから選択された256トークンを使用して256×256の画像を表すことができます。研究者たちは、トレーニングフェーズ中に自分たちの例にノイズを追加するために、このリストにいくつかのランダムに選択されたトークンを含めました。

研究者は、画像のテキスト記述に基づいてテキスト埋め込みを生成するために、画像とテキストの説明の間に接続を確立するCLIP(Contrastive Language-Image Pretraining)モデルを利用しました。次に、U-Net CNNアーキテクチャを使用して、テキスト埋め込みと前のイテレーションで生成されたトークンを使用して、元のトークンセットの完全なセットを生成するモデルのトレーニングが行われました。この反復プロセスは12回繰り返され、前回の反復で生成されたトークンの一部を徐々に置き換えていきます。残りの生成されたトークンのガイダンスの下で、U-Netは各ステップでノイズを徐々に減らしていきます。推論中、CLIPは与えられたテキストプロンプトに基づいて埋め込みを生成し、U-Netはランダムに選択された256トークンのセットに対して12ステップですべてのトークンを再構築しました。最後に、デコーダーは生成されたトークンを使用して画像を生成しました。

研究効果を評価するために、研究者たちはFréchet inception distance(FID)メトリックを使用して、PaellaモデルとStable Diffusionモデルから得られた結果を比較しました。結果はわずかにStable Diffusionに有利でしたが、Paellaは速度の点で大きなアドバンテージを持っています。この研究は、以前に考慮されていなかったアーキテクチャを完全に再構成することに焦点を当てたため、以前の取り組みとは異なります。結論として、Paellaは、既存のモデルに比べて小さなモデルサイズと少ないサンプリングステップで高品質の画像を生成でき、それでも顕著な成果を達成できます。研究チームは、ジェネラティブAIの分野が時間とともにますます注目を集める中、非技術的な分野を含むさまざまなバックグラウンドを持つ個人が簡単に採用できるシンプルなセットアップを提供するアプローチのアクセシビリティを強調しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

GoogleのAIスタジオ:ジェミニの創造的な宇宙への入り口!

Googleは、AI Studioの発売を通じて、開発者向けの画期的な革新を実現しました。このWebベースのプラットフォームは、Gemini ...

機械学習

「Appleが『AppleGPT』チャットボットを使った生成AI競争に参入」

テック大手のAppleは、大いに期待されているAI搭載チャットボット「AppleGPT」という仮の名前で進んでいます。この革新的なプ...

コンピュータサイエンス

認知的燃焼の引火:認知アーキテクチャとLLMの融合による次世代コンピュータの構築

「技術はシステムに統合されることで飛躍的な進展を遂げますこの記事では、言語モデルを統合したアーキテクチャの取り組みに...

データサイエンス

「関係深層学習ベンチマーク(RelBench)に出会ってください:関係データベース上の機械学習のためのリアルな、大規模で多様なベンチマークデータセットのコレクション」

人工知能(AI)と機械学習(ML)の急速な進歩の分野において、効果的で自動化され、適応性のある手法を見つけることは非常に...

データサイエンス

UC Berkeleyの研究者たちは、ディープラーニングにおいて効率的なデータ圧縮とスパース化を実現するための新しいホワイトボックストランスフォーマーであるCRATEを提案しています

最近、深層学習の実用的な成功は、高次元で多様なデータの処理とモデリングにおけるもので、指数関数的に成長しています。こ...

AI研究

スタンフォードの研究者たちはPLATOを発表しました:知識グラフに拡張された正則化を用いた高次元、低サンプルの機械学習の過適合に取り組むための斬新なAIアプローチ

ナレッジグラフ(KG)は、ノードとエッジとして情報を格納するグラフベースのデータベースです。一方、マルチレイヤーパーセ...