mPLUG-Owl2をご紹介しますこれは、モダリティの協力によってマルチモーダルな大規模言語モデル(MLLMs)を変換するマルチモーダルファウンデーションモデルです

「mPLUG-Owl2紹介:マルチモーダルファウンデーションモデルでMMILMを変換!」

大型言語モデルは、人間の能力を模倣する能力により人工知能コミュニティを魅了しています。優れたテキスト理解と生成能力を持つGPT-3、LLaMA、GPT-4、およびPaLMなどのモデルは、多くの注目と人気を集めています。最近発売されたOpenAIのモデルであるGPT-4は、マルチモーダルの能力を持つため、ビジョンと言語の応用の融合に対する関心を集めています。その結果、ビジュアルの問題解決能力を追加することで、MLLM(マルチモーダル大規模言語モデル)が開発されました。MLLMは、ビジュアルとテキストのタスクのパフォーマンスを向上させる目的で導入されました。

研究者は、マルチモーダル学習に焦点を当てており、前の研究では、複数のモダリティが同時にテキストとマルチモーダルタスクのパフォーマンスを向上させることがわかっています。クロスモーダルアライメントモジュールなどの現在存在するソリューションは、モダリティの協力の潜在能力を制限してしまいます。マルチモーダル指導中に大規模言語モデルを微調整することにより、テキストタスクのパフォーマンスが妥協されるという大きな課題が生じます。

これらの課題に対応するため、アリババグループの研究者チームはmPLUG-Owl2という新しいマルチモーダル基盤モデルを提案しました。mPLUG-Owl2のモジュール化されたネットワークアーキテクチャは、干渉とモダリティの協力を考慮しています。このモデルは、クロスモーダルの協力を促進するために共通の機能モジュールと、さまざまなモダリティ間のシームレスな推移のためのモダリティ適応モジュールを組み合わせています。これにより、ユニバーサルインターフェースとして言語デコーダを活用しています。

このモダリティ適応モジュールは、言語とビジュアルのモダリティを共通の意味空間に投影し、モダリティ固有の特性を保持しながら、両モダリティ間の協力を保証します。チームはmPLUG-Owl2のための二段階のトレーニングパラダイムを提示しました。それは、ビジョン-言語の指導チューニングとビジョン-言語の事前トレーニングで構成されています。このパラダイムの助けを借りて、ビジョンエンコーダはより効率的に高レベルと低レベルの意味的な視覚情報を収集するようになりました。

チームはさまざまな評価を実施し、mPLUG-Owl2がテキストの問題やマルチモーダルの活動にも一般化する能力を示しました。このモデルは、様々なタスクで最先端のパフォーマンスを達成する単一の汎用モデルとしての柔軟性を示しています。研究では、mPLUG-Owl2が純粋なテキストと複数のモダリティを含むシナリオでのモダリティの協力を示す最初のMLLMモデルであることが示されています。

結論として、mPLUG-Owl2は、マルチモーダル大規模言語モデルの領域において、重要な進歩と大きな前進です。従来のアプローチが主にマルチモーダルスキルの向上に焦点を当てていたのに対して、mPLUG-Owl2は、モダリティ間のシナジーを強調し、さまざまなタスクのパフォーマンスを向上させることを重視しています。このモデルは、言語デコーダが各モダリティを制御するための汎用インターフェースとして機能するモジュール化されたネットワークアーキテクチャを利用しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「創発的AIのためのガードレール構築への責任あるアプローチ」

「私たちは、創発型人工知能にガードレールを築く方法の一部を共有しています」

機械学習

TaatikNet(ターティクネット):ヘブライ語の翻字のためのシーケンス・トゥ・シーケンス学習

この記事では、TaatikNetとseq2seqモデルの簡単な実装方法について説明していますコードとドキュメントについては、TaatikNet...

機械学習

TensorFlowの学習率の変更方法

TensorFlowで学習率を変更するには、使用している最適化アルゴリズムに応じてさまざまなテクニックを利用することができます

人工知能

AIが置き換えることができない仕事

はじめに サイバーノートであろうとそうでなかろうと、おそらく「AIが置き換えることのできない仕事」の議論を聞いたことがあ...

機械学習

ディープラーニング実験の十のパターンとアンチパターン

この記事では、深層学習エンジニアとしての10年の経験から収集したパターンとアンチパターンのリストを紹介します深層学習エ...

機械学習

未来を点火する:TensorRT-LLMのリリースにより、AI推論のパフォーマンスが向上し、RTXを搭載したWindows 11 PCで新しいモデルのサポートが追加されました

Windows 11 PC上の人工知能は、ゲーマーやクリエイター、ストリーマー、オフィスワーカー、学生、そしてカジュアルなPCユーザ...