『LLM360をご紹介します:最初の完全オープンソースで透明な大規模言語モデル(LLM)』

『LLM360についてご紹介します:初の完全オープンソースで透明な大規模言語モデル(LLM)』

“`html

オープンソースの大規模言語モデル(LLM)であるLLaMA、Falcon、Mistralなどは、AIのプロフェッショナルや学者向けにさまざまな選択肢を提供しています。しかし、これらのLLMの大部分は、エンドモデルの重みや推論スクリプトなどの一部のコンポーネントだけが利用可能であり、技術的なドキュメントでは、一般的な設計の側面や基本的なメトリックに焦点を絞った内容が多いです。このアプローチでは、LLMのトレーニング手法の明確性が低下し、チームがトレーニング手順のさまざまな側面を継続的に解明するための努力が重複してしまいます。

Petuum、MBZUAI、USC、CMU、UIUC、UCSDの研究者チームが、LLM360を導入しました。これは、エンドツーエンドのLLMトレーニングプロセスを透明で再現可能にすることにより、オープンかつ協力的なAIの研究をサポートするイニシアチブです。LLM360は、トレーニングコードとデータ、モデルのチェックポイント、中間結果などのすべてをコミュニティに提供することを主張する、完全なオープンソースのLLMです。

LLM360に最も近いプロジェクトはPythiaであり、LLMの完全な再現性を目指しています。GPT-JやGPT-NeoXなどのEleutherAIモデルは、トレーニングコード、データセット、中間モデルのチェックポイントと共にリリースされており、オープンソースのトレーニングコードの価値を示しています。INCITE、MPT、OpenLLaMAは、トレーニングコードとトレーニングデータセットがリリースされ、RedPajamaも中間モデルのチェックポイントを公開しています。

LLM360は、AMBERとCRYSTALCODERの2つの7BパラメータLLMをリリースし、そのトレーニングコード、データ、中間チェックポイント、分析も提供します。事前トレーニングデータセットの詳細、データの前処理、フォーマット、データミキシングの比率、LLMモデルのアーキテクチャの詳細については、研究で詳しく説明されています。

この研究では、以前の研究で導入された記憶スコアの使用と、メトリック、データチャンク、チェックポイントの公開により、研究者が対応関係を容易に見つけることができるようになることを示しています。研究ではまた、LLMが事前にトレーニングされたデータを削除することの重要性や、データのフィルタリング、処理、トレーニング順序の詳細についても強調しています。

研究では、ARC、HellaSwag、MMLU、TruthfulQAの4つのデータセットについてのベンチマーク結果が示され、モデルの事前トレーニング中のパフォーマンスが示されています。HellaSwagとARCの評価スコアはトレーニング中に単調に増加し、TruthfulQAのスコアは減少します。MMLUのスコアは最初に減少し、その後成長します。AMBERのパフォーマンスはMMLUなどのスコアで競争力があるものの、ARCでは遅れています。ファインチューニングされたAMBERモデルは、他の類似モデルと比較して強力なパフォーマンスを示します。

LLM360は、オープンソースLLMの完全かつ包括的なイニシアチブであり、オープンソースのLLM事前トレーニングコミュニティ内での透明性を推進するものです。この研究では、AMBERとCRYSTALCODERの2つの7B LLMをトレーニングコード、データ、中間モデルのチェックポイント、分析と共にリリースしています。研究では、チェックポイント、データチャンク、評価結果を公開することにより、包括的な分析と再現性を可能にするため、すべての角度からLLMをオープンソース化することの重要性を強調しています。

“`

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「次世代ニューラルネットワーク:NeurIPSでの多くのAIの技術進歩をNVIDIA Researchが発表」

世界中の学術機関と協力して、NVIDIAの研究者は< a href=”https://www.voagi.com/ai-for-sustainable-banking-reduc...

AIニュース

『AI規制に関するEUの予備的な合意:ChatGPTへの影響』

ヨーロッパ連合は最近、広く認識されているChatGPTを含む先進的なAIモデルの規制に関する予備的な合意を仲介しました。これは...

機械学習

「RBIは、規制監督のためにAIを活用するために、マッキンゼーとアクセンチュアと提携します」

規制監督における重要な変化を示す動きとして、インド準備銀行(RBI)は、国際的なコンサルティング企業であるマッキンゼー・...

機械学習

「仕事は続けられますが、同じ仕事ではありません」

「AIが私たちのコーディングスキルに迫っている一方で、人間の言語を完全に習得したわけではありませんそれが私たちの競争上...

データサイエンス

倉庫業務の変革:AIと自動化の力を活用する

グローバルな供給チェーンの進化に伴い、顧客の要求に応える倉庫の役割がますます重要になってきています

データサイエンス

埋め込みの類似検索:データ分析の画期的な変革

オラクルは、意味に基づいて文書を取り込み、保存し、取り出すための生成的AI機能を、クラウドデータ分析サービスに追加しました