「GO TO Any Thing(GOAT)」とは、完全に見たことのない環境で、画像、言語、カテゴリのいずれかで指定されたオブジェクトを見つけることができる、ユニバーサルなナビゲーションシステムです

「GO TO Any Thing(GOAT)」:あらゆる何かを見つけるためのユニバーサルナビゲーションシステム

このsystemですGOATは、イリノイ大学アーバナ・シャンペーン校、カーネギーメロン大学、ジョージア工科大学、カリフォルニア大学バークレー校、Meta AI Research、Mistral AIの研究者チームによって開発されました。GOATは、家庭や倉庫の環境での拡張された自律運転を目指した普遍的なナビゲーションシステムです。GOATは、カテゴリラベル、ターゲット画像、言語の説明から目標を解釈できる多様なモーダルシステムです。過去の経験から利益を得るライフロングシステムです。GOATはプラットフォームに依存せず、さまざまなロボットの具現化に適応できます。

GOATは、カテゴリラベル、ターゲット画像、言語の説明を使用して、多様な環境での自律ナビゲーションに長けたモバイルロボットシステムです。GOATは深さの推定と意味的セグメンテーションを利用して、正確なオブジェクトインスタンスの検出とメモリストレージのための3D意味的ボクセルマップを作成します。意味的マップは、空間表現、オブジェクトインスタンス、障害物、探索済みエリアの追跡を容易にします。

GOATは動物や人間のナビゲーションの洞察に触発されたモバイルロボットシステムです。GOATは普遍的なナビゲーションシステムであり、人間の入力に基づいて異なる環境で自律的に操作します。モーダル、ライフロング、プラットフォームに依存しないGOATは、カテゴリラベル、ターゲット画像、言語の説明を使用して目標の指定を行います。この研究では、以前の手法のCLIP特徴マッチングよりもSuperGLUEベースの画像キーポイントマッチングを活用することで、未知のモーダルオブジェクトインスタンスへの到達におけるGOATの性能を評価し、その優越性を示しています。

GOATはイメージと言語の説明に基づいたモーダルナビゲーションのためのモジュラーデザインとインスタンスアウェアな意味的メモリを採用しています。事前計算されたマップなしで評価されるプランは、プラットフォームに依存しない学習能力を持っており、家庭での大規模な実験を通じてその能力を示しています。パスの計算には高速マーチング法を使用し、パスに沿ってウェイポイントに到達するためにポイントナビゲーションコントローラを使用します。

9つの家での実験的試行において、GOATは83%の成功率を達成し、以前の手法を32%上回りました。探索後の成功率が60%から90%に向上し、その適応性を示しています。GOATはピックアンドプレイスやソーシャルナビゲーションなどの下流タスクもスムーズに処理しました。質的実験では、GOATはボストンダイナミクスのスポットやハローロボットのストレッチロボットに展開されました。家庭でのSpotによる大規模な量的実験では、GOATの優れた性能が3つのベースラインを上回り、インスタンスの一致と効率的なナビゲーションにおいて優れていることが示されました。

優れたモーダルおよびプラットフォームに依存しない設計により、カテゴリラベル、ターゲット画像、言語の説明など、さまざまな手段で目標を指定することができます。モジュラーアーキテクチャとインスタンスアウェアな意味的メモリにより、同じカテゴリのインスタンスを効果的に識別することができます。事前計算されたマップなしでの大規模な実験で評価され、GOATは柔軟性を示し、ピックアンドプレイスやソーシャルナビゲーションなどのタスクに対応します。

GOATの将来の軌道は、さまざまな環境やシナリオでのパフォーマンスを総合的に評価し、その汎用性と堅牢性を測定する包括的な探求を含みます。調査では、調査中の課題に対処するために一致閾値の向上を目指します。目標カテゴリに基づいてインスタンスのサブサンプリングをさらに探求し、パフォーマンスの向上を図ります。GOATの進行中の開発は、グローバルおよびローカルポリシーの改善と、より効率的なナビゲーションのための追加の技術の統合を検討します。広範な現実世界での評価は、異なるロボットやタスクを含めて、GOATの汎用性を検証します。さらなる探求により、GOATの適用範囲をナビゲーション以外の領域、例えば物体認識、操作、相互作用にも広げることが可能です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

2024年に探索するべきトップ12の生成 AI モデル

はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな...

機械学習

「AI/MLツールとフレームワーク:包括的な比較ガイド」

この記事では、主要なAI/MLツールやフレームワークの簡潔な比較を提供し、特定のAI/MLプロジェクトに適した技術の選択を支援...

機械学習

「POCOと出会う:3D人体姿勢と形状推定のための画期的な人工知能フレームワーク」

写真や動画から3D人体のポーズと形状(HPS)を推定することは、現実世界の設定で人間のアクションを再構築するために必要です...

機械学習

「AIとML開発言語としてのPythonの利点」

「AIやMLなどのツールを使用して、ウェブ開発会社が業界を征服するためにPythonがますます使用されている理由を発見してくだ...

AIテクノロジー

イーロン・マスクが「Grok」を紹介:反抗的なダッシュのあるおしゃべりAIチャットボット

テック界は興奮に包まれています。スペースXやテスラなど画期的な事業の立案者であるイーロン・マスクが、彼の新しいAI会社、...

機械学習

「Nvidiaが革命的なAIチップを発表し、生成型AIアプリケーションを急速に強化する」

技術が常に限界を押し上げる時代において、Nvidiaは再びその名を刻みました。同社はGH200 Grace Hopper Superchipを発売しま...